

CIE BIOLOGY 2

Cambridge International Examination A Level Year 2 | **Student Workbook**

Contents

Making the most of *CIE BIOLOGY 2*

Meeting Key Competencies 2
The Contents: A Planning Tool
Introducing the CIE Biology 2 Content 4
Finding Your Way Around5
Practical Investigations
Making Use of Weblinks 7
Engage, Explore, Explain, Elaborate, and
Evaluate
Links - Making Connections 10
Differential Instruction with BIOZONE11
Choosing Activities for Home Study 13
Focus on Literacy
The Teacher's Digital Edition
Using BIOZONE's Website

FAQs ABOUT OUR CIE BIOLOGY 2 STUDENT WORKBOOK

What is its pedagogical approach?	2
How do I use the tab system?	5,6
What are weblinks?	7
How do students demonstrate understanding of ideas?	11
How can I evaluate student performance?	12
How do I use the workbook in the classroom?	8-13
How can I use it to build scientific literacy?	14

Meeting Key Competencies

2

We want today's biology students to be self-motivated, lifelong learners, to develop a sound grasp of biological knowledge, to plan and evaluate their work, and to think critically and independently. In developing CIE Biology 2, we have utilised the 5Es instructional model as a basis for developing materials to specifically address the CIE Biology syllabus. By successfully completing the activities, which make up the bulk of the student workbook, students can demonstrate competence in skills and knowledge. BIOZONE's workbooks and associated products provide a varied and interesting suite of resources which, if used effectively, can help your students achieve key competencies in all areas of biology.

BIOZONE encourages the development of an independent learner profile using the 5 Es model

	The Five Es
Engage:	make connections between past and present learning experiences.
Explore:	become actively involved in the activity.
Explain:	communicate the learning experience.
Elaborate:	expand on the concepts learned.
Evaluate:	assess understanding of the concepts.

ENGAGE: Highly visual activities	Use activities in class to engage a student when introducing a topic, or to consolidate student understanding and summarise the material covered by other methods. Using activities in class provides valuable opportunities for peer-to-peer learning.
ENGAGE: A connected plan of study	The check-box format of the contents pages and the chapter introductions provides a focus for planning achievement.
EXPLORE: Independent, self directed study	Activities are self-contained so students are encouraged to be independent learners and seek the answers to questions posed by the activity. Capable students can work quickly and independently through the material and can use the time for extension. Less able students can review or finish activities at home. Most activities are supported by webbased resources in the form of animations and video clips.
EXPLAIN: Communicating is the key to consolidation	All activities first engage the student with a key idea and a visually inviting delivery of content. Student engagement with this material leads them to the questions in which they must communicate their understanding of the content. Students are encouraged to use appropriate biological terms as referenced in the chapter introduction (key terms).
ELABORATE: Building up	Most introductory activities are supported by activities in which students apply their understanding of ideas to a new situation. These 'follow-on' activities often involve data analysis, and support science practices.
EVALUATE: Easy assessment	Encourage self assessment with chapter reviews (these can be graded if desired) or use specific activities to evaluate a student's skills and understanding or ideas.
WHAT ABOUT HOMEWORK?	Assign activities as homework to review a completed topic, explore a related concept, or introduce a topic prior to in-class practical work.

The Contents: A Planning Tool

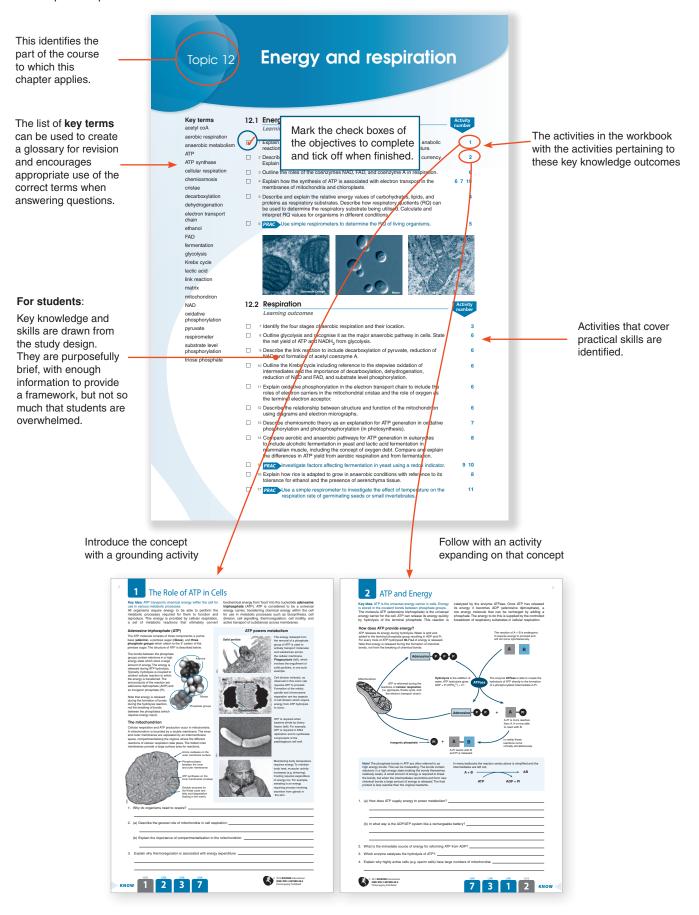
The contents pages are not merely a list of the activities in the workbook. They serve as a planning tool for the programme of work to be completed. Students can identify the activities they are to complete and then tick them off when completed. The teacher can also see at glance how quickly the student is progressing through the assigned material.

> : Did You Get it?..... 59 rdination

3 ATP Production in Cells 4 4 Measuring Respiratory Quotient 5 5 Respiratory Quotient 7 7 The Biochemistry of Respiration 8 8 Chemiosmosis 10 9 Anaerobic Pathways 11 10 Investigating Fermentation in Yeast 13 11 Investigating Aerobic Respiration 8 12 Chapter Review 16 13 KEY TEMIS AND IDEAS: Did You Get it? 60 14 Energy in Cells 16 15 Photosynthesis 20 16 Chapter Review 16 17 Pigments and Light Absorption 22 18 Separation of Pigments by Chromatograph 20 19 Light Dependent Reactions 26 12 Factors Affecting Photosynthesis 20 13 Hearning Outcomes 21 14 Energy in Cells 20 15 Photosynthesis 20 16 Choroplasts 21 17 Pigments and Light Absorption	Using This Workbook			47	KEY TERMS AND IDEAS: Did You G
Mathemátical Skills of A Level viii Learning Outcomes Energy and respiration 8 Nervous System Regulation 1 The Role of ATP In Cells 2 2 ATP and Energy 3 3 ATP Production in Cells 4 4 Measuring Respiration Rate 5 5 Respiratory Quotient 7 7 The Bichemistry of Respiration 8 6 Determining Respiratory Quotient 7 7 The Bichemistry of Respiration in Yeast 10 10 Investigating Fermentation in Yeast 15 12 Chapter Review. 16 13 KEY TERMS AND IDEAS: Did You Get it? 17 14 Energy in Cells 20 15 Photosynthesis 20 16 Chloroplasts 21 17 Pigments and Light Absorption 22 18 Experimental Investigation of Photosynthesis 21 19 Light Independent Reactions 26 19 Experimental Investigation of Photosynthesis 31 20 Learning Outcomes		vii			
Energy and respiration Learning Outcomes 1 1 The Role of APP in Cells 2 2 APP and Energy 2 3 ATP Production in Cells 4 4 Measuring Respiration Rate 6 5 Respiratory Quotient 7 7 The Biochemistry of Respiration 8 8 Chemissmosis 10 9 Anaerobic Pathways 11 10 Investigating Aerobic Respiration in Yeast 15 11 Investigating Aerobic Respiration in Yeast 16 12 Chapter Review 16 13 KEY TERMS AND IDEAS: Did You Get I? 60 14 Energy in Cells 16 15 Pholosynthesis 20 16 Chioroplasts 21 17 Pigenetian and Light Absorption 22 25 Forestigation of Pigments by Chromatography 20 26 Intergration of Pigments in Apical Domina 21 26 Intergration of Pigments in Apical Domina 22 27 Forestigating Enzyments by Chromatogra					
Learning Outcomes 1 1 The Role of ATP in Cells 2 2 ATP and Energy 3 3 ATP Production in Cells 4 4 Measuring Respiration Rate 5 5 Respiratory Quotient 6 6 Determining Respiratory Quotient 7 7 The Biochemistry of Respiration 8 8 Chemiosmosis 10 9 Anaerobic Pathways 11 10 Investigating Fermentation in Yeast 15 12 Chapter Review 11 13 KEY TERMS AND IDEAS: Did You Get it? 60 14 Energy in Cells 10 15 Photosynthesis 20 16 Chapter Review 61 17 Pigments and Light Absorption 22 18 Separation of Pigments by Chromatograph 23 19 Light Dependent Reactions 26 19 Light Dependent Reactions 27 20 Learning Outcomes 27 22 Factors Affecting Photosynthesis 20 <	Mathematical Skills of A Level	VIII		٦.	
Learning Outcomes 1 1 The Basis of Sensory Reception 2 ATP and Energy 3 ATP Production in Cells 4 Measuring Respiratory Quotient 6 Determining Respiratory Quotient 7 The Biochemistry of Respiration at Synapses 9 Anerobic Pathways 11 Investigating Aerobic Respiration in Yeast 12 Chapter Review 13 KEY TERMS AND IDEAS: Did You Get I? 14 Energy in Cells 15 Photosynthesis 16 Chioroplasts 17 Pigments and Light Absorption 18 Represention Pigments in Apical Domina 19 Photosynthesis 11 Investigating Aerobic Nathways 14 Energy in Cells 15 Photosynthesis 16 Chioroplasts 17 Pigments and Light Absorption 18 Sensorus Atternantion Pigments in Apical Domina 19 Learning Outcomes 10 Resparation of Pigments and Light Absorption 12 Factors Affecting Photosynthesis <	Energy and respiration				
1 The Role of ATP in Cells 2 2 ATP and Energy 3 3 ATP Production in Cells 4 4 Measuring Respiratory Routent 5 5 Respiratory Quotient 6 6 Determining Respiratory Quotient 7 7 The Biochemistry of Respiration 8 8 Chemiosmosis 10 9 Anarobic Pathways 11 9 Anarobic Respiration in Yeast 15 10 Investigating Fermentation in Yeast 15 11 Investigating Aerobic Respiration in Yeast 15 12 Chapter Review 66 13 KEY TERMS AND IDEAS: Did You Get it? 7 14 Energy in Cells 20 15 Photosynthesis 20 16 Charpler Review 66 17 The Ret of Glucose 7 17 Photosynthesis 21 16 Choroplasts 22 17 Photosynthesis 21 17 The Rate of Glucose 77		1	17	6	
2 AIP and Energy 3 3 AIP Production in Cells 4 4 Measuring Respiration Rate 5 5 Respiratory Quotient 7 7 The Biochemistry of Respiration 6 8 Chemiosmosis 10 9 Anaerobic Pathways 11 10 Investigating Aerobic Respiration in Yeast 3 11 Investigating Aerobic Respiration in Yeast 5 12 Chapter Review 16 13 KEY TERMS AND IDEAS: Did You Get it? 7 7 Photosynthesis 6 14 Energy in Cells 18 15 Photosynthesis 6 16 Chloroplasts 21 17 Pigments and Light Absorption 22 18 Separation of Pigments by Chromatography 23 19 Light Dependent Reactions 26 10 Inherited change 27 10 Photosynthesis 30 21 Retator Glucose 7 22 Factors Affecting Photosynthesis 30 <td></td> <td></td> <td></td> <td></td> <td></td>					
4 Measuring Respiration Rate 5 5 Respiratory Quotient 6 6 Determining Respiratory Quotient 7 7 The Biochemistry of Respiration 8 8 Chemiosmosis 10 9 Anaerobic Pathways 11 10 Investigating Aerobic Respiration in Yeast 13 11 Investigating Aerobic Respiration in Yeast 16 12 Chapter Review 60 13 KEY TERMS AND IDEAS: Did You Get it? 7 Photosynthesis 14 Energy in Cells 19 15 Photosynthesis 20 16 Chorpolasts 21 17 Pigments and Light Absorption 22 18 Separation of Pigments by Chromatography 23 19 Light Dependent Reactions 26 12 Factors Affecting Photosynthesis 21 19 Light Dependent Reactions 26 21 The Role of Meiosis 27 22 Factors Affecting Photosynthesis 31 23 Gasshouse Te		3			Reflexes
5 Respiratory Quotient 6 6 Determining Respiratory Quotient 7 7 The Biochemistry Of Respiration 8 8 Chemiosmosis 10 9 Anaerobic Pathways 11 10 Investigating Fermentation in Yeast 15 12 Chapter Review 16 13 KEY TERMS AND IDEAS: Did You Get it? 60 14 Energy in Cells 64 15 Photosynthesis 64 16 Chiroplasts 64 17 Piostosynthesis 66 16 Chiroplasts 64 17 Piotosynthesis 66 18 Separation of Pigments by Chromatography 23 19 Light Dependent Reactions 26 21 The Fate of Glucose 70 22 Factors Affecting Photosynthesis 30 23 Glasshouse Technology 29 24 Experimental Investigating Crymes in Photosynthesis 30 25 Investigating Crymes in Photosynthesis 30 26 Interfacto			12		The Nerve Impulse
6 Determining Respiratory Quotient 7 7 The Biochemistry of Respiration 6 8 Chemiosmosis 7 9 Anaerobic Pathways 11 10 Investigating Ferementation in Yeast 13 11 Investigating Ferementation in Yeast 16 12 Chapter Review. 16 13 KEY TERMS AND IDEAS: Did You Get it? 60 14 Energy in Cells. 19 15 Photosynthesis 20 16 Choroplasts. 21 17 Pigments and Light Absorption 22 18 Separation of Pigments by Chromatography. 23 19 Light Independent Reactions. 24 20 Light Independent Reactions. 24 21 The Fate of Glucose 7 22 Factors Affecting Photosynthesis 20 23 Insertified change 7 24 Experimental Investigation of Photosynthesis 30 25 Investigating Photosynthesis 30 26 Investitigating Photosynthesis 31 <td>- · · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>14</td> <td>54</td> <td></td>	- · · · · · · · · · · · · · · · · · · ·		14	54	
7 The Biochemistry of Respiration 8 8 Chemiosmosis 10 9 Anaerobic Pathways 11 10 Investigating Fermentation in Yeast 13 11 Investigating Aerobic Respiration in Yeast 16 12 Chapter Review 16 13 KEY TERMS AND IDEAS: Did You Get it? 17 Photosynthesis Learning Outcomes 18 14 Energy in Cells 19 15 Photosynthesis 20 16 Chapter Review 65 17 Pigments and Light Absorption 22 18 Separation of Pigments by Chromatography. 23 19 Light Independent Reactions. 24 21 The Fate of Glucose 70 22 Factors Affecting Photosynthesis. 30 23 Glasshouse Technology 29 24 Experimental Investigation of Photosynthesis. 31 25 Investigating Photosynthesis 31 26 Investigating Photosynthesis 32 25 Investigation of P					
8 Chemiosmosis 10 9 Anaerobic Pathways 11 10 Investigating Fearmentation in Yeast 13 11 Investigating Aerobic Respiration in Yeast 15 12 Chapter Review. 16 13 KEY TERMS AND IDEAS: Did You Get it? 17 Photosynthesis Learning Outcomes 18 14 Energy in Cells 19 15 Photosynthesis 20 16 Chloroplasts 20 17 Pigments and Light Absorption 22 18 Separation of Pigments by Chromatography 23 19 Light Dependent Reactions 24 20 Light Independent Reactions 26 21 The Fate of Glucose 77 22 Factors Affecting Photosynthesis 30 23 Glasshouse Technology 29 24 Experimental Investigation of Photosynthesis 30 25 Investigating Photosynthesis 30 26 Insertigations and Selles 30 25 Investigating Photosynthesis<					
9 Anaerobic Pathways 11 10 Investigating Fermentation in Yeast 13 11 Investigating Fermentation in Yeast 15 12 Chapter Review 16 13 KEY TERMS AND IDEAS: Did You Get it? 17 Photosynthesis Learning Outcomes 18 14 Energy in Cells 19 15 Photosynthesis 20 16 Choroplasts 21 17 Pigments and Light Absorption 22 18 Separation of Pigments by Chromatography 23 19 Light Independent Reactions 24 20 Light Independent Reactions 24 21 The Fate of Glucose 27 22 Factors Affecting Photosynthesis 20 23 Glasshouse Technology 29 24 Experimental Investigating Photosynthesis 30 25 Investigating Photosynthesis 30 26 Investigating Photosynthesis 30 25 Investigating Photosynthesis 30 26 Investigating Photos					
10 Investigating Fermentation in Yeast 13 11 Investigating Aerobic Respiration in Yeast 15 12 Chapter Review 16 13 KEY TERMS AND IDEAS: Did You Get it? 17 Photosynthesis Learning Outcomes 18 14 Energy in Cells 19 15 Photosynthesis 20 16 Chloroplasts 21 17 Pigments and Light Absorption 22 20 Light Dependent Reactions 26 21 The Fate of Glucose 27 22 Factors Affecting Photosynthesis 20 23 Inschled Change 27 24 Experimental Investigation of Photosynthesis 30 25 Investigating Photosynthesis 30 26 Inschled Change 27 27 Adaptations for Photosynthesis 30 28 Chapter Review 36 29 Exearning Outcomes 37 30 Modelling Meiosis 30 24 Experimental Investigation Photosynthesis 30 <td></td> <td></td> <td></td> <td></td> <td></td>					
11 Investigating Aerobic Respiration in Yeast 15 60 Control of Reproduction 12 Chapter Review 16 Plant Responses 61 13 KEY TERMS AND IDEAS: Did You Get it? 7 63 Tropisms and Growth Responses 14 Energy in Cells 19 66 The Role of Auxins in Apical Domina 14 Energy in Cells 19 66 The Role of Auxins in Apical Domina 15 Photosynthesis 20 67 Gibberellins and Stem Eiongation 16 Chloroplasts 20 68 Chapter Review 69 19 Light Dependent Reactions 24 26 KEY TERMS AND IDEAS: Did You C 19 Light Dependent Reactions 26 70 Describing Alleles 27 21 The Role of Meiosis 30 74 Meiosis and Variation 27 22 Factors Affecting Photosynthesis 30 74 Meiosis and Variation 27 22 Factors Affecting Photosynthesis 30 74 Meiosis and Variation 27 23 Glasshouse Technology 29 20				59	
12 Chapter Review. 16 Plant Responses 13 KEY TERMS AND IDEAS: Did You Get it? 17 62 Nastic Responses Photosynthesis 14 Energy in Cells. 19 65 Transport and Effects of Auxins in Apical Domina 15 Photosynthesis 20 66 The Rele of Auxins in Apical Domina 16 Choroplasts 21 67 Gibberellins and Stem Elongation 16 Choroplasts 22 68 Chapter Review. 68 Chapter Review. 21 The Fate of Glucose 27 27 Describing Alleles 27 22 Eactors Affecting Photosynthesis. 28 70 Describing Alleles 27 22 Glasshouse Technology 29 27 Meiosis 27 Meiosis 27 23 Glasshouse Technologynthesis 30 70 Describing Alleles 27 Meiosis 28 76 Mononhybrid Cross Practice. 76 <td></td> <td></td> <td></td> <td>60</td> <td></td>				60	
13 KEY TERMS AND IDEAS: Did You Get it? 17 62 Nastic Responses Photosynthesis 14 Energy in Cells 63 TropIsms and Growth Responses 15 Photosynthesis 63 TropIsms and Growth Responses 16 Choroplasts 19 65 Transport and Effects of Auxins in Apical Domina 16 Chloroplasts 20 66 The Role of Auxins in Apical Domina 17 Pigments and Light Absorption 22 20 Light Independent Reactions 26 21 The Fate of Glucose 27 20 Describing Alleles 23 Glasshouse Technology 29 24 Experimental Investigation of Photosynthesis 30 24 Experimental Investigation of Photosynthesis 30 74 Meiosis 75 21 The Rate of Outcomes 31 74 Meiosis 75 The Monohybrid Cross. 24 Experimental Investigation Photosynthesis 33 76 Monohybrid Cross. 76 Monohybrid Cross. 25 Investigating Photosynthesis 38 77 Problems Involving					
Photosynthesis 63 Tropisms and Growth Responses Learning Outcomes 64 Auxins, Gibberellins, and ABA 14 Energy in Cells 19 15 Photosynthesis 20 16 Chloroplasts 20 17 Pigments and Light Absorption 22 18 Separation of Pigments by Chromatography 23 19 Light Dependent Reactions 26 21 The Fate of Glucose 27 22 Factors Affecting Photosynthesis 28 23 Glasshouse Technology 29 24 Experimental Investigation of Photosynthesis 30 25 Investigating Enzymes in Photosynthesis 31 26 Investigating Photosynthesis 30 27 Adaptations for Photosynthesis 31 28 Chapter Review 35 29 KEY TERMS AND IDEAS: Did You Get it? 36 30 Homeostasis 38 31 Maintaining Homeostasis 39 32 Negative Feedback 41 33 Feedback Systems Can Interact <t< td=""><td>13 KEY TERMS AND IDEAS: Did You Get it?</td><td>. 17</td><td>- 0</td><td>62</td><td></td></t<>	13 KEY TERMS AND IDEAS: Did You Get it?	. 17	- 0	62	
Learning Outcomes 16 14 Energy in Cells 19 15 Photosynthesis 20 16 Chloroplasts 20 17 Pigments and Light Absorption 22 18 Separation of Pigments by Chromatography 23 19 Light Dependent Reactions 24 20 Light Independent Reactions 26 21 The Fate of Glucose 27 22 Factors Affecting Photosynthesis 27 23 Glasshouse Technology 29 24 Experimental Investigation of Photosynthesis 30 25 Investigating Enzymes in Photosynthesis 31 26 Inperited Change 28 27 Adaptations for Photosynthesis 30 28 Chapter Review 35 29 KEY TERMS AND IDEAS: Did You Get it? 36 30 Homeostasis 38 31 Maintaining Homeostasis 39 32 Negative Feedback 41 33 Feedback Systems Can Interact 42 34 Nerous and End	Photosynthesis			63	Tropisms and Growth Responses
14 Energy in Cells 19 65 The Riel of Auxins in Apical Domina 15 Photosynthesis 20 67 Gibberellins and Stem Elongation 16 Choroplasts 21 68 Chapter Review 69 17 Pigments and Light Absorption 22 69 KeY TERMS AND IDEAS: Did You Cells 19 Light Dependent Reactions 24 24 10 Inherited change 20 Light Independent Reactions 26 70 Describing Alleles 27 21 The Fate of Glucose 77 Describing Alleles 27 27 Meiosis 27 22 Factors Affecting Photosynthesis 30 73 Modelling Meiosis 77 Meiosis and Variation 77 23 Classhouse Technology 29 73 Modelling Meiosis 77 Meiosis and Variation 77 24 Experimental Investigating Photosynthesis 33 76 Monohybrid Cross Practice 76 Monohybrid Cross Practice 76 Monohybrid Cross Practice 76 Monohybrid Inherita 25 Investigating Photosynthesis 33		10		64	Auxins, Gibberellins, and ABA
15 Photosynthesis 20 67 Gibberglins and Stem Elongation 16 Chloroplasts 21 Gibberglins and Stem Elongation 68 Chapter Review 69 KEY TERMS AND IDEAS: Did You G 19 Light Dependent Reactions 24 24 Inherited change 20 Light Independent Reactions 26 26 Learning Outcomes 21 The Fate of Glucose 70 Describing Alleles 71 22 Factors Affecting Photosynthesis 26 70 Describing Alleles 72 22 Factors Affecting Photosynthesis 30 73 Modelling Meiosis 73 24 Experimental Investigation of Photosynthesis 30 74 Meiosis and Variation 25 Investigating Photosynthesis 33 75 The Monohybrid Cross 25 Investigating Photosynthesis 33 76 Monohybrid Cross 26 Chapter Review 35 76 Monohybrid Cross 25 Nerostasis 38 Bi Inheritance Patients 36 31 Maintaining Homeostasis 38 Bi Bi			_		Transport and Effects of Auxins
16 Chloroplasts 21 17 Pigments and Light Absorption 22 18 Separation of Pigments by Chromatography			_		
17 Pigments and Light Absorption 22 18 Separation of Pigments by Chromatography 23 19 Light Dependent Reactions					
18 Separation of Pigments by Chromatography			- 8		
19 Light Dependent Reactions 24 Inherited change 20 Light Dependent Reactions 26 Learning Outcomes 27 21 The Fate of Glucose 27 70 Describing Alleles 28 23 Glasshouse Technology 29 71 The Role of Meiosis 71 24 Experimental Investigation of Photosynthesis 30 74 Meiosis and Variation 24 Experimental Investigating Enzymes in Photosynthesis 31 74 Meiosis and Variation 25 Investigating Photosynthetic Rate 32 73 Modelling Meiosis 76 26 Investigating Photosynthesis 33 74 Meiosis and Variation 77 26 Chapter Review 35 77 Problems Involving Monotybrid Inheritance of Alleles 78 79 Codominance in Multiple Allele Systs 26 KEY TERMS AND IDEAS: Did You Get it? 36 36 31 Inheritance of Linked Genes 32 Negative Feedback 41 38 Disport Cross 33 31 Nervous and Endocrine Interactions 36 38 10 Disport Cross 32	18 Separation of Pigments by Chromatography			69	KEY TERMS AND IDEAS: DId You G
21 The Fate of Glucose 27 22 Factors Affecting Photosynthesis 28 23 Glasshouse Technology 29 24 Experimental Investigation of Photosynthesis 30 25 Investigating Enzymes in Photosynthesis 30 26 Investigating Photosynthesis 31 26 Investigating Photosynthesis 33 27 Adaptations for Photosynthesis 33 28 Chapter Review 36 29 KEY TERMS AND IDEAS: Did You Get it? 36 30 Homeostasis 33 31 Mainalining Homeostasis 38 32 Negative Feedback 41 33 Feedback Systems Can Interact 42 34 Nervous and Endocrine Interactions 43 35 The Widney 49 39 The Physiology of the Kidney 47 39 The Physiology of the Kidney 48 39 The Physiology of the Kidney 49 39 The Physiology of the Kidney 48 39 The Physiology of the Kidney 49 <td></td> <td>24</td> <td></td> <td></td> <td>Inherited change</td>		24			Inherited change
22 Factors Affecting Photosynthesis 26 23 Glasshouse Technology 29 24 Experimental Investigation of Photosynthesis 30 25 Investigating Enzymes in Photosynthesis 30 26 Investigating Photosynthesis 31 26 Investigating Photosynthesis 31 26 Investigating Photosynthesis 33 27 Adaptations for Photosynthesis 33 28 Chapter Review. 35 29 KEY TERNS AND IDEAS: Did You Get it? 36 30 Homeostasis 30 31 Maintaining Homeostasis 39 32 Negative Feedback 41 33 Feedback Systems Can Interact 42 34 Nervous and Endocrine Interactions 43 35 The Elver's Role in Protein Metabolism 46 36 The Structure of the Kidney 47 39 The Structure of the Kidney 47 39 The Structure of the Kidney 48 39 The Structure of the Kidney 48 39 The Structure of					Learning Outcomes
23 Glasshouse Technology 29 72 Melosis 24 Experimental Investigation of Photosynthesis 30 73 Modelling Meiosis 25 Investigating Photosynthesis 31 74 Meiosis and Variation 26 Investigating Photosynthesis 31 74 Meiosis and Variation 26 Investigating Photosynthesis 32 75 The Monohybrid Cross Practice 27 Adaptations for Photosynthesis 33 77 Problems Involving Monohybrid Inhe 28 Chapter Review 35 77 Problems Involving Monohybrid Inhe 29 KEY TERMS AND IDEAS: Did You Get it? 36 78 Codominance of Alleles 30 Horneostasis 38 Sex Linked Genes 31 Maintaining Homeostasis 38 31 Maintaining Homeostasis 38 38 Inheritance Patterns 38 32 Negative Feedback 41 85 Detecting Linkage in Dihybrid Inherita 33 Homeostasis 39 83 Inheritance Patterns 39 34 Nervous and Endorine Interactions 44 86 <td></td> <td></td> <td></td> <td>70</td> <td>Describing Alleles</td>				70	Describing Alleles
24 Experimental Investigation of Photosynthesis 30 73 Modelling Meiosis 25 Investigating Photosynthesis 31 74 Meiosis and Variation 26 Investigating Photosynthesis 33 75 The Monohybrid Cross 27 Adaptations for Photosynthesis 33 76 Monohybrid Cross Practice 27 Adaptations for Photosynthesis 33 76 Monohybrid Cross Practice 28 Chapter Review 36 77 Problems Involving Monohybrid Inherita 28 KEY TERMS AND IDEAS: Did You Get it? 36 80 Sex Linked Genes 29 KEY TERMS AND IDEAS: 37 80 Bonohybrid Inherita 30 Horneostasis 38 Bonohybrid Cross 31 31 Mainaining Homeostasis 38 Binheritance of Linked Genes 33 32 Negative Feedback 41 86 Chi-Squared in Genetics 33 The Structure of the Kidney 47 86 Poblems Involving Dihybrid Inherita 33 The Structure of the Kidney 48 90 Poblygenes 90 Polygenes <td></td> <td></td> <td></td> <td>71</td> <td>The Role of Meiosis</td>				71	The Role of Meiosis
25 Investigating Enzymes in Photosynthesis					
26 Investigating Photosynthesic Rate 32 75 The Monohybrid Cross 27 Adaptations for Photosynthesis 33 76 Monohybrid Cross 28 Chapter Review 35 76 Monohybrid Cross 28 Chapter Review 35 76 Monohybrid Cross 28 Chapter Review 35 76 Monohybrid Cross 29 KEY TERMS AND IDEAS: Did You Get it? 36 78 Codominance in Allejes 20 Cadming Outcomes 37 78 Codominance in Allejes 37 30 Homeostasis 38 Sex Linked Genes 31 Inheritance Patterns 38 31 Maintaining Homeostasis 38 Sex Linked Genes 31 31 Inheritance Patterns 38 32 Negative Feedback 41 38 Detecting Linkage in Dihybrid Inherita 38 33 Thermoregulation in Humans 44 34 Beotecting Linkage in Genetics 37 34 Revous and Endorine Interactions 48 Broblems Involving Dihybrid Inherita 38 Drawing the Kidney 49 96	24 Experimental Investigation of Photosynthesis				
27 Adaptations for Photosynthesis 33 76 Monotybrid Cross Practice 28 Chapter Review 36 77 Problems Involving Monotybrid Inher 29 KEY TERMS AND IDEAS: Did You Get it? 36 77 Problems Involving Monotybrid Inher 29 KEY TERMS AND IDEAS: Did You Get it? 36 77 Problems Involving Monotybrid Inher 30 Homeostasis 36 77 Problems Involving Inheritance Patterns 36 31 Maintaining Homeostasis 39 38 Inheritance Patterns 32 32 Negative Feedback 41 84 Recombination and Dihybrid Inherita 33 Feedback Systems Can Interact 42 85 Detecting Linkage in Dihybrid Inherita 34 Nervous and Endocrine Interactions 43 86 Problems Involving Dihybrid Inherita 35 Thermoregulation in Humans 44 88 Problems Involving Dihybrid Inherita 36 The Liver's Role in Protein Metabolism 46 88 Problems Involving Dihybrid Inherita 37 The Physiology of the Kidney 49 91 Gene Interactions 92					
28 Chapter Review					
29 KEY TERMS AND IDEAS: Did You Get it? 36 Homeostasis 78 Codominance of Alleles Learning Outcomes 77 Codominance of Alleles 30 Homeostasis 80 Sex Linked Genes 31 Maintaining Homeostasis 88 Sex Linked Genes 32 Negative Feedback 81 Inheritance Patterns 33 Feedback Systems Can Interact 42 85 Detecting Linkage in Dihybrid Inherita 34 Nervous and Endocrine Interactions 43 86 Chi-Squared in Genetics 35 Thermoregulation in Humans 44 89 Gene Interactions 89 35 Therwores Role in Protein Metabolism 46 88 Problems Involving Dihybrid Inherita 36 The Liver's Role in Carbohydrate Metabolism 46 90 Polygenes 90 37 The Structure of the Kidney 49 91 Gene Interactions 92 The Nature of Mutations 93 38 Therwork Role in Carbohydrate Metabolism 51 92 The Nature of Mutations 93 39 The Physiology of the Kidney 49					
Homeostasis 79 Codominance in Multiple Allele Syst Learning Outcomes 37 30 Homeostasis 38 Sex Linked Genes 31 30 Homeostasis 38 Dihybrid Cross 31 Inheritance Patterns 32 31 Maintaining Homeostasis 39 33 Feedback 41 84 Recombination and Dihybrid Inherita 33 Feedback Systems Can Interact 42 85 Detecting Linkage in Dihybrid Inherita 33 Feedback Systems Can Interact 42 86 Chi-Squared in Genetics 34 Nervous and Endocrine Interactions 43 87 Using Chi-Squared in Genetics 35 Thermoregulation in Humans 44 89 Gene Interactions 38 36 The Liver's Role in Protein Metabolism 46 88 Problems Involving Dihybrid Inherita 37 The Structure of the Kidney 47 89 Gene Interactions 38 Drawing the Kidney 49 91 Gene Mutations 39 The Physiology of the Kidney 49					
HOMeoStasis 80 Sex Linked Genes 20 Homeostasis 31 30 Homeostasis 38 31 Maintaining Homeostasis 39 32 Negative Feedback 41 33 Feedback 41 34 Nervous and Endocrine Interactions 43 35 Themoregulation in Humans 44 36 The Liver's Role in Protein Metabolism 46 37 The Studency 47 38 The Proviology of the Kidney 47 39 The Proviology of the Kidney 48 39 The Proviology of the Kidney 49 39 The Proviology of the Kidney 49 39 The Proviology of the Kidney 49 30 Control of Urine Output 51 31 Control of Blood Glucose 52 30 Control of Messenger 54 34 Control of Messenger 54 34 Control of Messenger 54 34 Control of Blood Glucose 57 35 Control of Blood Glucose					
30 Homeostasis 38 31 Maintaining Homeostasis 39 31 Maintaining Homeostasis 39 32 Negative Feedback 41 33 Feedback 41 33 Feedback 41 34 Nervous and Endocrine Interactions 43 35 Thermoregulation in Humans 44 36 The Liver's Role in Protein Metabolism 46 37 The Structure of the Kidney 47 39 The Physiology of the Kidney 47 39 The Physiology of the Kidney 48 39 The Physiology of the Kidney 49 39 The Physiology of the Kidney 49 39 The Physiology of the Kidney 49 30 Control of Urine Output 51 31 Charler Second Messenger 54 34 Control of Blood Glucose 57 35 CAMP as					Sex Linked Genes
31 Maintaining Homeostasis 39 31 Maintaining Homeostasis 39 32 Negative Feedback 41 33 Inheritance of Linked Genes 33 Feedback Systems Can Interact 42 35 Detecting Linkage In Dihybrid Inherita 34 Nervous and Endocrine Interactions 42 35 Detecting Linkage In Dihybrid Inherita 35 Thermoregulation in Humans 44 87 Using Chi-Squared in Genetics 35 The Structure of the Kidney 47 89 Gene Interactions 38 Drawing the Kidney 48 90 Polygenes 39 The Physiology of the Kidney 49 91 Gene Mutations 41 Control of Urine Output 51 92 The Nature of Mutations 41 Control of Urine Output 51 92 The Nature of Mutations 42 The Liver's Role in Carbohydrate Metabolism. 53 94 Gene Mutations 42 The Liver's Role in Carbohydrate Metabolism. 54 95 Cystic Fibrosis Mutation. 43 APM pas Second Messenger 54 95 Gene Induction in Prokaryot				81	Inheritance Patterns
32 Negative Feedback 41 84 Recombination and Dihybrid Inherita 33 Feedback Systems Can Interact 42 85 Detecting Linkage in Dihybrid Inherita 34 Nervous and Endocrine Interactions 43 86 Chi-Squared in Genetics 35 Thermoregulation in Humans 44 86 Chi-Squared in Genetics 36 The Liver's Role in Protein Metabolism 46 88 Problems Involving Dihybrid Inherita 37 The Structure of the Kidney 47 89 Gene Interactions 90 38 Drawing the Kidney 48 90 Polygenes 91 Gene Interactions 39 The Physiology of the Kidney 49 91 Gene Mutations 92 The Nature of Mutations 41 Control of Urine Output 51 92 The Nature of Mutations 94 Gene Mutations and Genetic Diseas 42 The Liver's Role in Carbohydrate Metabolism 53 95 Cystic Fibrosis Mutations 94 Gene Mutations and Genetic Diseas 43 CAMP as Second Messenger 54 95 Gene Induction in Prokaryotes 97 Gene Induction in Prok				_	Dihybrid Cross
33 Feedback Systems Can Interact 42 34 Nervous and Endocrine Interactions 43 35 Thermoregulation in Humans 44 35 Thermoregulation in Humans 44 36 The Liver's Role in Protein Metabolism 46 37 The Structure of the Kidney 47 38 Drawing the Kidney 48 39 The Physiology of the Kidney 48 39 The Physiology of the Kidney 49 39 The Physiology of the Kidney 49 40 Control of Urine Output 51 41 Control of Blood Glucose 52 42 The Liver's Role in Carobydrate Metabolism 53 43 Control of Blood Glucose 52 44 Urine Analysis 57 45 Homeostasis in Plants 56 45 Homeostasis in Plants 56 46 Charter Beview 58					Inheritance of Linked Genes
34 Nervous and Endocrine Interactions 43 35 Detecting Linkage and Dinybrid Inherita 35 Thermoregulation in Humans 44 86 Chi-Squared in Genetics 36 The Liver's Role in Protein Metabolism 46 87 Using Chi-Squared in Genetics 37 The Structure of the Kidney 47 89 Gene Interactions 89 39 The Physiology of the Kidney 49 91 Gene Mutations 91 40 Control of Urine Output 51 92 The Nature of Mutations 93 41 Control of Biood Glucose 52 93 Beneficial Mutations 94 42 The Liver's Role in Carbohydrate Metabolism. 53 94 Gene Mutations 94 44 Urine Analysis 57 96 Gene, Enzymes, and Phenotype 95 Cystic Fibrosis Mutation. 45 Homeostasis in Plants 56 97 Gene Induction in Prokaryotes 97 46 Charber Review 58 97 Gene Induction in Prokaryotes 97					
35 Thermoregulation in Humans 44 36 Chirsquardo in Genetics 36 The Liver's Role in Protein Metabolism 46 88 Problems Involving Dihybrid Inherital 37 The Structure of the Kidney 47 89 Gene Interactions 38 Drawing the Kidney 47 89 Polygenes 39 The Physiology of the Kidney 49 91 Gene Interactions 40 Control of Urino Output 51 92 The Nature of Mutations 41 Control of Urino Output 51 92 Beneficial Mutations 42 The Liver's Role in Carbohydrate Metabolism 53 94 Gene Mutations and Genetic Diseas 43 CAMP as Second Messenger 54 95 Gystic Fibrosis Mutation 44 Urine Analysis 56 97 Gene Induction in Prokaryotes 45 Homeostasis in Plants 56 97 Gene Induction in Prokaryotes					
36 The Liver's Role in Protein Metabolism					
37 The Structure of the Kidney 47 38 Drawing the Kidney 47 39 Gene Interactions 39 Gene Interactions 30 38 Drawing the Kidney 48 90 Polygenes 91 Gene Interactions 30 39 The Physiology of the Kidney 49 91 Gene Mutations 30 40 Control of Urine Output 51 92 The Nature of Mutations 30 41 Control of Blood Glucose 52 93 Beneficial Mutations 30 42 The Liver's Role in Carbohydrate Metabolism 53 94 Gene Mutations and Genetic Diseas 43 CAMP as Second Messenger 54 95 Cystic Fibrosis Mutation 44 Urine Analysis 57 96 Gene, Enzymes, and Phenotype 45 Homeostasis in Plants 56 97 Gene Induction in Prokaryotes 46 Charter Review 58 97 Gene Induction in Prokaryotes					
38 Drawing the Kidney 48 90 Polygenes 39 The Physiology of the Kidney 49 91 Gene Mutations 40 Control of Urine Output 51 92 The Nature of Mutations 41 Control of Urine Output 51 92 The Nature of Mutations 42 The Liver's Role in Carbohydrate Metabolism 53 94 Gene Mutations and Genetic Diseas 43 CAMP as Second Messenger 54 95 Cystic Fibrosis Mutation 44 Urine Analysis 57 96 Gene, Enzymes, and Phenotype 45 Homeostasis in Plants 56 97 Gene Induction in Prokaryotes	37 The Structure of the Kidney				
39 The Physiology of the Kidney	38 Drawing the Kidney	48			
40 Control of Urine Output 51 92 The Nature of Mutations 41 Control of Blood Glucose 52 93 Beneficial Mutations 42 The Liver's Role in Carbohydrate Metabolism 53 94 Gene Mutations and Genetic Diseas 43 CAMP as Second Messenger 54 95 Cystic Fibrosis Mutation 44 Urine Analysis 57 96 Gene, Enzymes, and Phenotype 45 Homeostasis in Plants 56 97 Gene Induction in Prokaryotes 46 Charter Review 58 57 100 100	39 The Physiology of the Kidney				
41 Control of Blood Glucose 52 93 Beneficial Mutations 42 The Liver's Role in Carbohydrate Metabolism 53 94 Gene Mutations and Genetic Diseas 43 CAMP as Second Messenger 54 95 Cystic Fibrosis Mutation 44 Urine Analysis 57 96 Gene, Enzymes, and Phenotype 45 Homeostasis in Plants 56 97 Gene Induction in Prokaryotes 46 Charler Review 58 57 97 Gene Induction in Prokaryotes				92	
42 The Liver's Role in Carbohydrate Metabolism53 94 Gene Mutations and Genetic Diseas 43 CAMP as Second Messenger 54 95 Cystic Fibrosis Mutation				93	Beneficial Mutations
44 Urine Analysis					Gene Mutations and Genetic Disease
45 Homeostasis in Plants					Cystic Fibrosis Mutation
46 Chapter Beview 58					Gene, Enzymes, and Phenotype
				97	Gene Induction in Prokaryotes
			4		Col
Activity is marked: to be done; when completed					Learning (

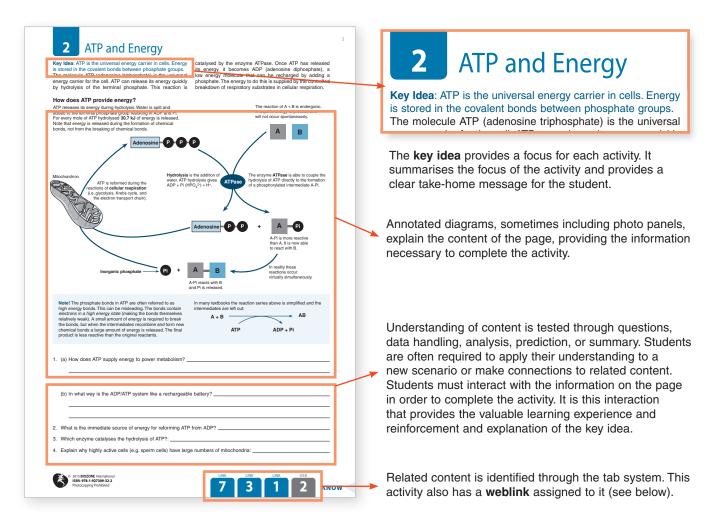
The teacher can see at a glance how this student is progressing through this unit of work. Any concerns with progress can be addressed early.

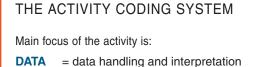
Students can mark the check boxes to indicate the activities they should complete. This helps them to quantify the work to be done and plan their work.


Ticking off the activities as they are completed gives students a sense of progression and helps them to be more personally organised in their work.

Control and coordination

		Learning Outcomes	60
-	48	Nervous System Regulation	61
•	49	Neurone Structure	62
⊿	50	The Basis of Sensory Reception	63
•	51	A Sensory Receptor	64
≤	52	Reflexes	65
≤	53	The Nerve Impulse	66
4	54	The Cholinergic Synapse	68
4	55	Integration at Synapses	69
•	56	Neuromuscular Junction	70
•	57	Skeletal Muscle Structure and Function	71
	58	The Sliding Filament Theory	73
	59	Hormones and the Control of the	
		Menstrual Cycle	74
	60	Control of Reproduction	76
	C1	Plant Passanaa	77


Introducing the CIE Biology 2 Content

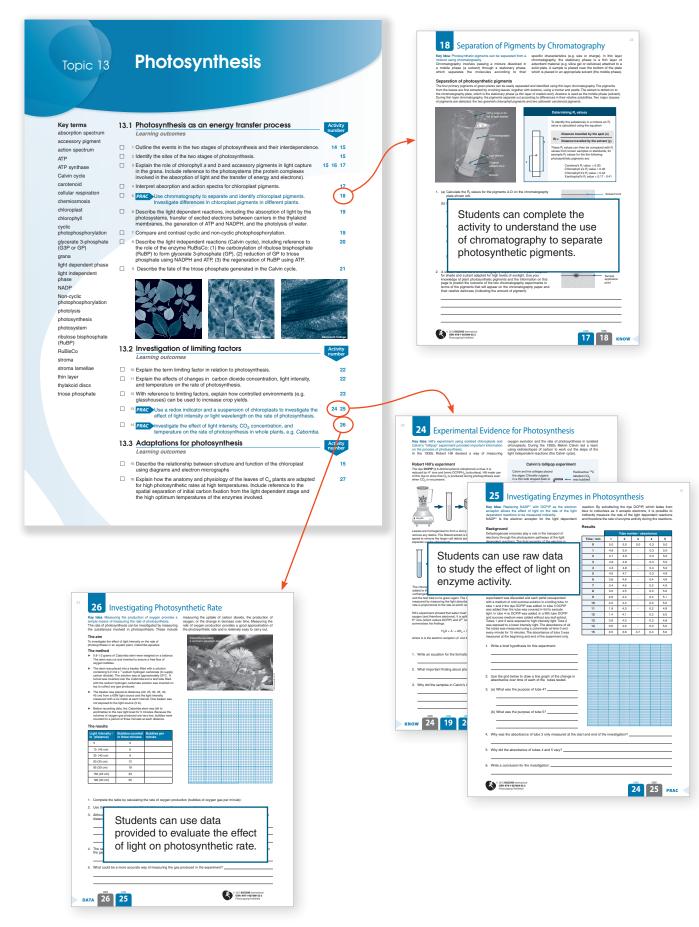

Each chapter in CIE Biology 2 is prefaced with a one page introduction, providing students with an overview of the chapter content and organisation. Each of the numbered learning outcomes pertains to a point of key knowledge or a skill, and is matched to one or more activities. A list of key terms for the chapter is also included. The comprehensive, but accessible, list of learning outcomes encourages students to approach each topic confidently. Familiarity with the scientific terms used in each topic is implicit in this.

Finding Your Way Around

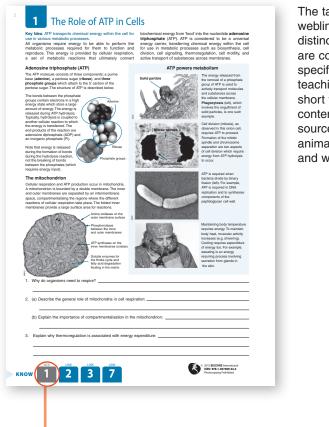
The content of the CIE Biology 2 is organised into 8 chapters, each one beginning with an introduction and concluding with a student's self-test of understanding and vocabulary. Inviting, concept-based activities make up the bulk of each chapter, with each activity focussing on the student developing an understanding of a concept, applying that understanding to another scenario, and/or developing an essential skill, such as graphing, data analysis, or biological drawing. An important feature of each activity is the key idea, which encapsulates the main focus of the content provided. Clear annotated diagrams and photographs are a major part of almost all activities and the student's understanding of the information is tested through a series of questions and/or data handling and interpretation tasks. The tabs for each activity identify the nature of the activity, and identify related material and external weblinks, which provide support for the activity.

- **KNOW** = content you need to know
- PRAC = a paper practical or a practical focus
- **REFER** = reference use this for information
- **REVISE** = review the material in the section
- **SKILL** = a specific skill to be demonstrated
- **TEST** = test your understanding
- **EXT** = Extension activity

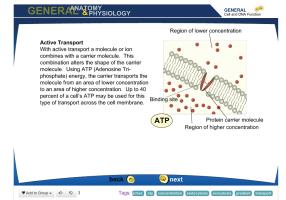
Weblinks


This grey tab indicates a weblink. Bookmark the weblinks page:

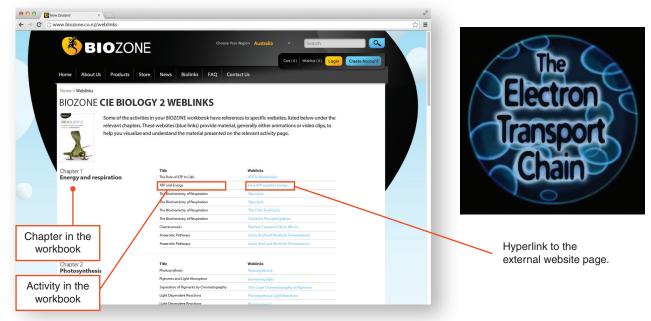
www.biozone.co.uk/weblink/CIE-2-9322


Access the external URL for the activity by clicking the link next to its number.

Practical Investigations

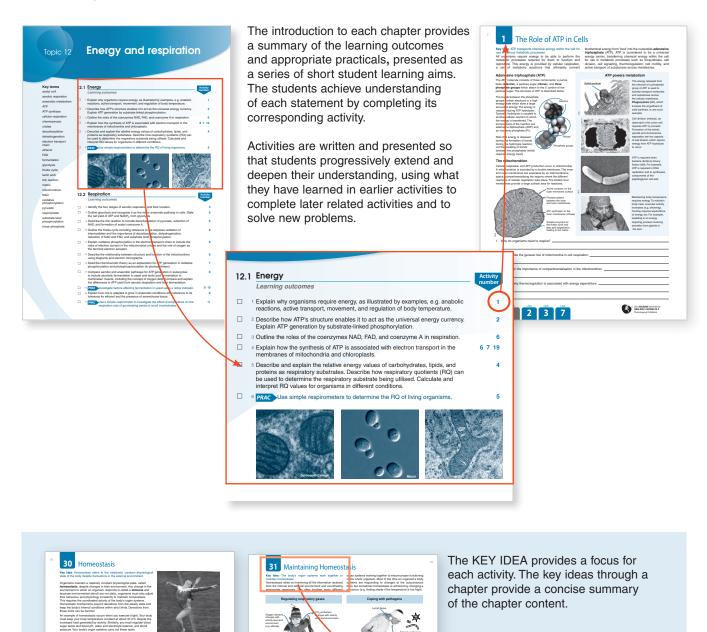

The basic techniques and skills required for practical work and mathematical skills are addressed throughout the workbook. Activities that support practical investigations are identified in the introduction of the relevant chapters.

Making Use of Weblinks


The tab system at the base of each activity identifies if there is a weblink available to support the activity's content. The weblinks are distinct from the general Biolinks area of BIOZONE's website. They are coded with the activity number and are only accessible through a specific url (below), so bookmark the address at the beginning of your teaching year and always have them on hand. The weblinks comprise short video clips or animations aimed specifically at the activity content. These are external sites from a wide range of reputable sources and are invaluable as support to explain content or view an animation of a process such as diffusion or active transport. It's easy and we've done the hard work for you. Just click and view.

Weblinks exist for most of the activities in the workbook, from cells to evolution.

www.biozone.co.uk/weblink/CIE-2-9322


This WEBLINKS page provides links to **external web sites** with supporting information for the activities. Almost exclusively, they are narrowly focussed animations and video clips relevant to the activity on which they are cited. They offer great support to aid student understanding of basic concepts, especially for visual learners.

Bookmark weblinks by typing in the address: it is not accessible directly from BIOZONE's website Corrections and clarifications to current editions are always posted on the weblinks page

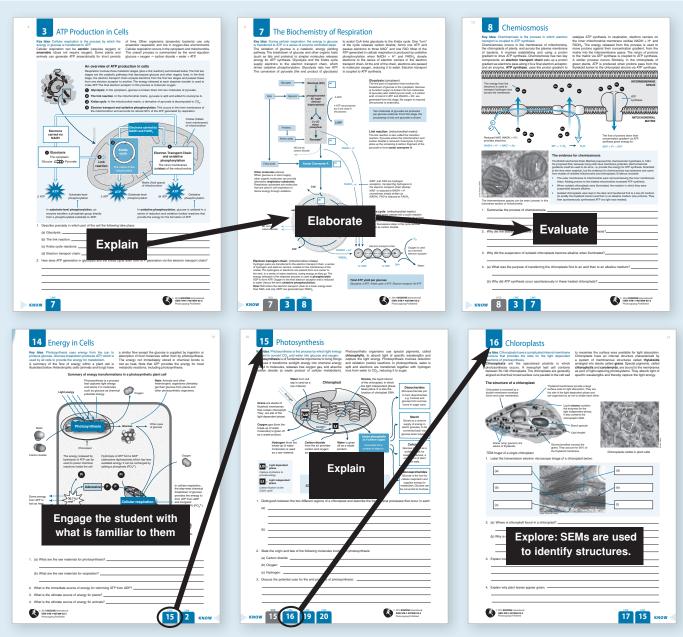
Engage, Explore, Explain, Elaborate, and Evaluate

In developing CIE Biology 2, we have focussed on the key knowledge and skills requirements identified in the CIE Biology syllabus. The activities in CIE Biology 2 have been specifically written to address this content. Our focus is student engagement through the use of a concept-based, highly visual design and opportunity to demonstrate skills and understanding.

Elaborate

31 Maintaining Homeostasis

Key Idea: The body's organ systems work together to maintain homeostasis Homeostasis relies on monitoring all the information received


organ system of the whole systems are

Students become actively involved in the learning activity by interacting with the material, answering the question and completing the set tasks. Many activities are suitable as assessment tasks.

Engage, explain, elaborate, and evaluate: Activities are nested. An introductory activity introduces and builds understanding of a specific core idea, and a subsequent activity involves applying that understanding to a new situation, e.g. analysing data, finding a solution, or interpreting new information.

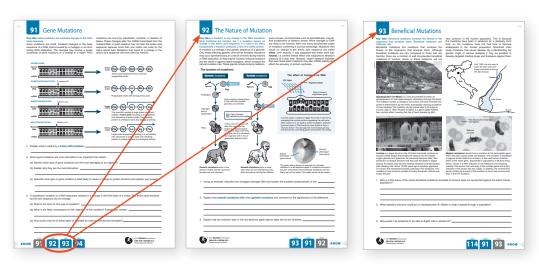
Contraction Contraction

Engage, explore and explain

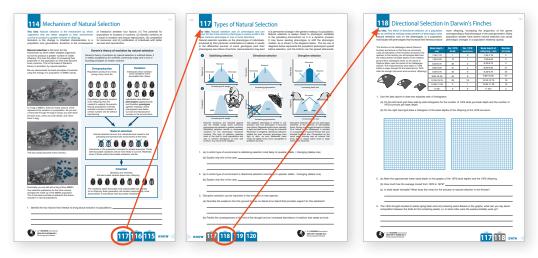
This activity begins by engaging the student with something familiar (glucose is used in respiration) and introduces the concept of photosynthesis.

Students then explore the chloroplast and the sites of the light dependent and independent reactions.

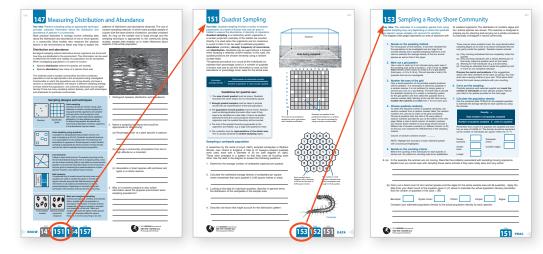
Students apply their understanding to the identification of structures in the chloroplast. 9


Groups of activities build knowledge and understanding by giving students the chance to learn and apply their knowledge in a series of linked activities.	<page-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></page-header></page-header>
Engage: visualise the concept of a gene pool	
Explore: relate changes in allele frequencies to microevolutionary processes	
Elaborate: calculate allele frequencies from provided data	
Evaluate : apply understanding of the Hardy-Weinberg principle to the analysis of allele frequencies in a real population	

LINKS - Making Connections


10

The **LINK** tabs help students to connect ideas between different topics in the CIE Biology syllabus. Connections may be made to activities that build on or develop an idea, utilise the same core principles in another biological context, or examine the evidence for a biological process. The connections help students to appreciate that the same core principles underlie many biological phenomena and there is evidence to support them. Understanding these core principles brings understanding to a wide range of contexts and situations, even if they are unfamiliar.



Gene Mutations Understand what causes mutations, different types of mutation, and examples of harmful and beneficial mutations.

EXAMPLE 2

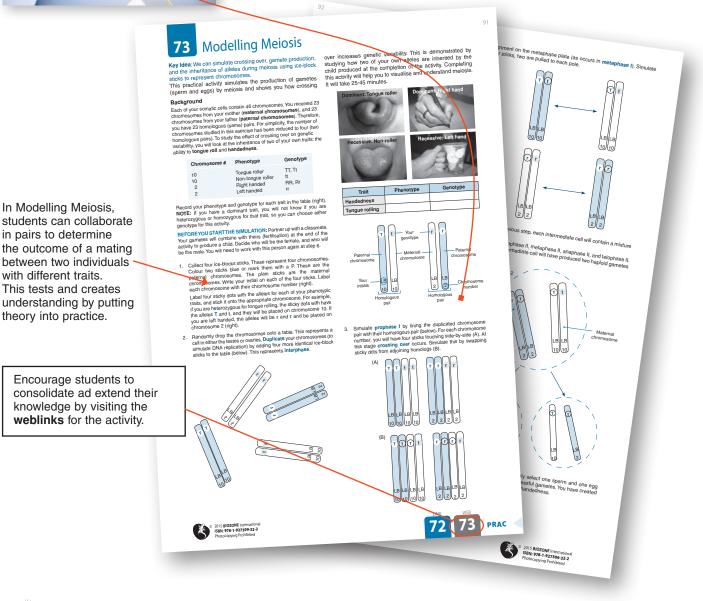
Natural selection Explore the mechanism of natural section and understand the characteristics of the three main types. An analysis of real population data involving directional section follows.

Sampling

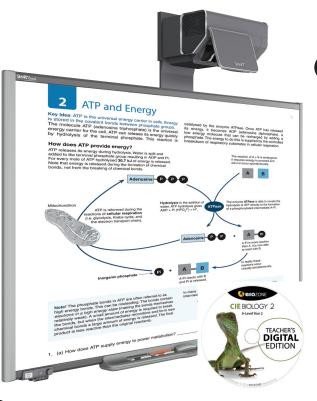
Understand the features of different types of sampling, and examine the use quadrat sampling in more depth. Apply this understanding in a sampling simulation of rocky shore populations.

Differential Instruction with BIOZONE

Achieving effective differential instruction in classes is a teaching challenge. Students naturally have mixed abilities, varying backgrounds in the subject, and different language skills. Used effectively, BIOZONE's workbooks and supporting products can make teaching a mixed ability class easier. Here, we offer three approaches for differential instruction.


MAKING A START

Regardless of which activity you might be attempting in class, a 5-10 minute introduction to the task by the teacher is useful orientation for all students. For collaborative work, the teacher can then divide the class into appropriate groups, each with a balance of able and less able students.

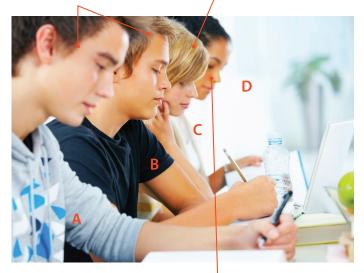

Efficient Differential Instruction

- · Use peer-to-peer learning for more challenging activities where the level of content is more difficult and the questions require students to draw on several areas of their knowledge to synthesise an answer.
- Stronger peers can assist weaker students and both groups benefit from verbalising their thoughts and presenting them to a group. ESL students can ask their peers to explain unfamiliar terms (both scientific and English) and this benefits both parties. Paper practicals (e.g. Modelling Meiosis, Sampling a Rocky Shore Community) are another ideal vehicle for this kind of peer-to-peer learning.

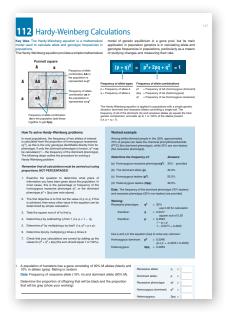
the outcome of a mating between two individuals with different traits. This tests and creates understanding by putting theory into practice.

Encourage students to consolidate ad extend their knowledge by visiting the weblinks for the activity.

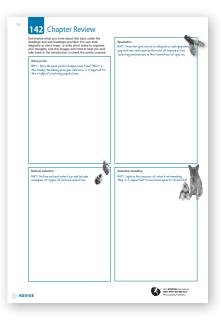
Gaining Confidence


3

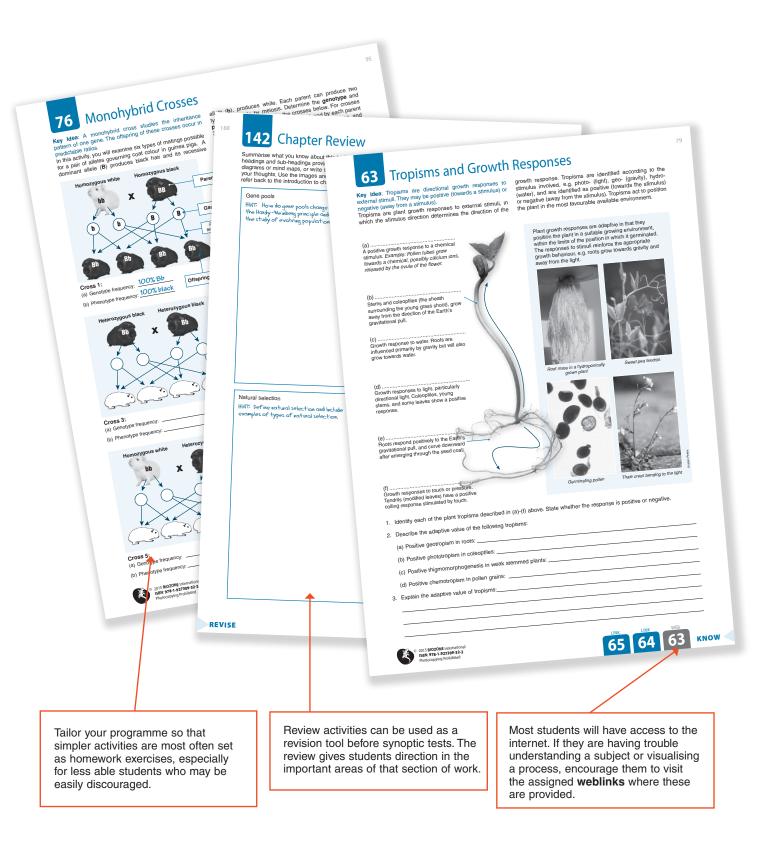
- The questions in BIOZONE's workbook activities have generally been written in a direct questioning style, e.g. "What are the differences between A and B", or "Why are A and B different?". This makes it easier for the students to understand what is required to answer the question.
- Questions are also arranged so that simpler questions (describe, what, identify, name) are generally asked first, followed by questions demanding an explanation (explain, how, why, account for). This allows students to gain confidence from answering the simpler questions first before attempting the questions that require more comprehensive answers.
- This arrangement also allows teachers to direct students appropriately so that some may attempt only the simpler questions themselves and work with peers to attempt the more challenging questions.


Interactive revision of tasks in class

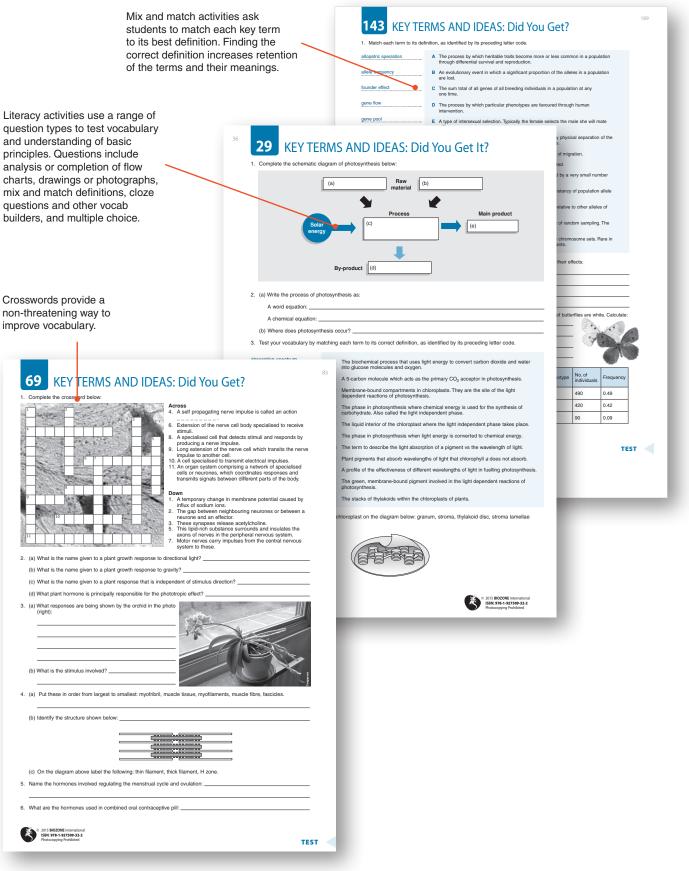
- Use the workbook PDFs with HIDE/SHOW answers on the **Teacher's Digital Edition** to review activities in class using a data projector or interactive whiteboard.
- Students benefit from the feedback in class, where questions can be addressed, and teachers benefit by having students self-mark their work and receive helpful feedback on their responses.
- This approach is particularly suited to activities with questions requiring a discussion, as students will be able to clarify some aspects of their responses. Stronger students can benefit by contributing to the explanatory feedback and class discussion.


Students A and B will work through simpler questions themselves but may require assistance with the more challenging questions in this activity. **Student C** is capable. She completes all of this activity including the more challenging questions.

Student D (above) is capable and completes the set work quickly. She can assist her peers and demonstrate her understanding in the relevant section of the review sheets.


2.	You are working with yeas plants and found 38 plants out of 400 were deart. Data: Thequancy of recessive planetarype (80 out - 400 = 9%) (0) Calculates the frequency of the tail give: (0) Calculates the frequency of the tail give: (0) Datemine the number of helamorygous pea plants:	Recessive allele: Dominant allele: Recessive phenotype: Homozygous dominant: Heterozygous:	q = p = q ² = p ² = 2pq =
3.	In humans, the ability to tasks the chemical phenythiocarbaniski (PTC is immetted as a simple dominant chemicativities. Suppose you found out that 380 out of 1000 college students could not tasks the chemical. Date: Frequency of recessive phenotype (800 out of 1000). (4) State the tequency of the get	Pecessive allele: Dominant allele:	q = p =
4.	(c) Datemine the number of hete A type of addomity appears in 4% addomity was caused by a receive the calculation	comple	
	(a) Calculate the percentage of the herd that are carriers of the gene: (b) Determine the frequency of the dominant gene in this case:	Recessive phenotype: Homozygous dominant: Heterozygous:	q ² = p ² = 2pq =
5.	Assume you placed 50 pure bred black guinea pigs (dominant allefe) with 50 albino guinea pigs (recessive allefe) and allowed the population to attain	Recessive allele:	
	genetic equilibrium (several generations have passed). Data: Frequency of recessive allele (50%) and dominant allele (50%). Determine the proportion (%) of the population that becomes white:	Dominant allele: Recessive phenotype:	q = p = q ² =
6.	genetic equilibrium (seiveral generations have passed). Data: Frequency of recessive allele (50%) and dominant allele (50%).	Dominant allele:	p =
6.	genetic explaintrium (several generations have passed)	Dominant allele: Recessive phenotype: Homozygous dominant:	p = q ² = p ² =
	pendic splittich [being pendicids have passed]. Data Property of neuron skets (SK) of advance skets (SK). Datamine the propertion (%) of the population that becomes white It is known that dK's, of a large population shells the recessive and of a Datamine the second s	Dominant allele: Pecessive phenotype: Homozygous dominant: Heterozygous:	p = q ² = p ² = 2pq =

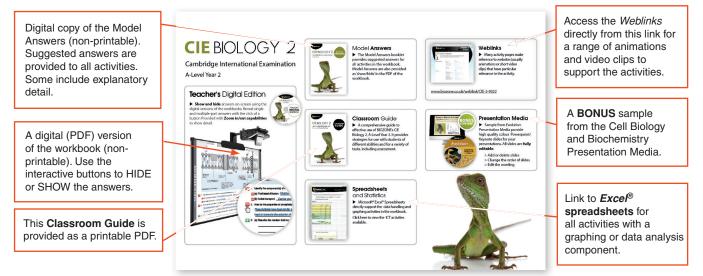
Choosing Activities for Home Study

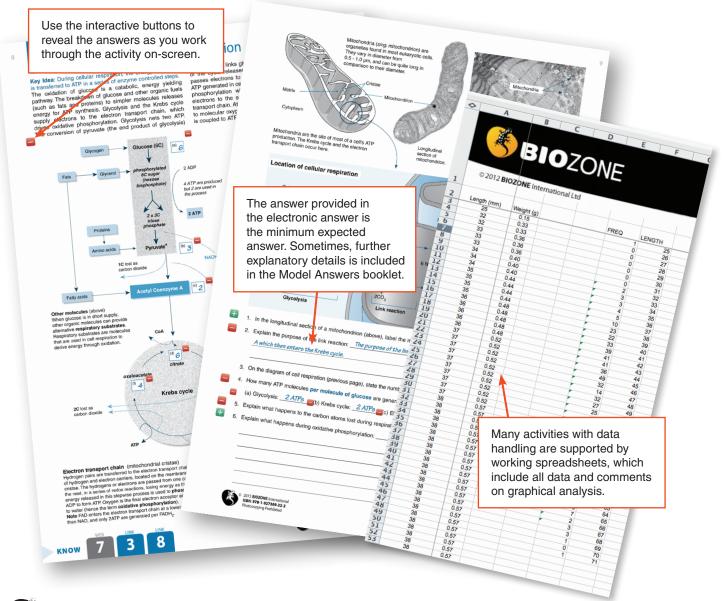

Many of the workbook activities are ideal for homework or as vehicles for a quick synoptic assessment. Review activities are ideal as homework. They provide a way to review a topic that has recently been completed, while at the same time facilitating consolidation by presenting the material in a slightly different way. The information for review activities can be found within the chapter, although stronger students may not need to refer back to source material to complete the set work. Generally, homework activities should revise completed topics or provide a basic entry-level introduction.

Focus on Literacy

14

Within all areas of science, scientific literacy is an important area of focus. With it, communication in the topic is more effective, more concise, and less cumbersome. BIOZONE's literacy and comprehension activities provide a vehicle for increasing the student's familiarity with the use of scientific terms in various contexts. Beginning with the list of KEY TERMS in the introduction to each chapter, students can create their own glossary of commonly used terms. They can learn to use these key terms appropriately by encountering them in context within the activities, and reinforce their understanding of the term by completing the literacy activities throughout the workbook. These take several forms:




© 2016 BIOZONE International

The Teacher's Digital Edition

The *Teacher's Digital Edition* is aimed primarily at extending the pedagogical tools at a teacher's disposal. Many of the features of this resource have been developed in response to requests from teachers themselves.

Using BIOZONE's Website

BIOZONE's web site should be the first stop for biologists. As well as providing all our product information (including shipping dates) and updates, *www.biozone.co.uk* provides quick access to the latest RSS newsfeeds and podcasts from around the world. You can also quickly link to the websites of publishers of references cited in the workbooks. Perhaps of greatest value to students and teachers is the BIOLINKS area of BIOZONE's website. The BIOLINKS pages are distinct from *WebLinks* (which are specific to each workbook edition) and provide a database of well organised hyperlinks pertaining to topics of interest in biology and environmental science. The database is updated regularly, so that outdated, not operational, or no longer relevant sites are removed and new sites are added as they appear.

