

CLASSROOM GUIDE

THE LIVING SECOND EDITION

NGSS INTEGRATING BIOLOGY AND EARTH SCIENCE

Contents

Extended Contents	CG3
List of Practical Investigations In The Living Earth	CG7
Summary of BIOZONE's 3D Approach By Chapter	. CG8
Identifying California Common Core State Standard	
Connections	CG11
Identifying Learning Intentions and Goals	CG13
Using the Contents: Planning and Pacing	CG14
Scaffolded Learning with the 5Es	CG15
Practical Investigations	CG18
California Environmental Principles and Concepts	CG19
Engineering Design Solutions	CG20
The Nature of Science	CG21
Teaching Strategies for Classroom Use	CG22
Tools for Differentiated Instruction	CG25
Formative and Summative Assessment	CG26
The Teacher's Digital Edition	CG27

Purchases of this book may be made direct from the publisher:

BIOZONE Corporation

USA and Canada		
FREE phone:	1-855-246-4555	
FREE fax:	1-855-935-3555	
Email:	sales@thebiozone.com	
Web:	www.thebiozone.com	

What is its pedagogical approach?	CG15- CG17
Does it cater for all three dimensions of the NGSS?	CG8
Are the Ca CCSS Math and Literacy Connections addressed?	CG11
Are the ELD Standards addressed?	CG11
Is it phenomenon based?	CG15, CG18
How are the 5Es incorporated?	CG15
Are there practical investigations?	CG7, CG18
Are California's Environmental Principles and Concepts addressed?	CG19
How is engineering design addressed?	CG20
How does it address the Nature of Science?	CG21
How do I use the workbook in the classroom?	CG22
Are there tools for differentiated instruction?	CG25
How can I support English language learners?	CG25
How can I evaluate student performance?	CG26
Are there supporting resources?	CG27
How do I allocate time through the course?	CG6, CG14

Next Generation Science Standards (NGSS) is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product and do not endorse it.

Contents

Instructional Segment 1: Ecosystem Interactions and Energy

- A - C	An English of Original
1	An Engless Swarm ANCHORING PHENOMENON: The high density and swarming of migratory locusts
2	The Earth's Systems ENGAGE: The Earth is made up of spheres 3 EXPLORE: Ecosystems have many components 4
~	
3	Abiotic Factors Influence Distribution ENGAGE: Distribution of the common sea star
	EXPLORE. Estuarme mabilities
	ELABORATE : Alien invaders and a system out of balance
	EVALUATE: Communicate your findings
4	The Ecological Niche
	ENGAGE: The niche is the functional role of an organism10
	fundamental niche 11
	EXPLAIN: Making a prediction about niche
5	Populations Have Varied Distributions
	ENGAGE: Populations
	EXPLORE: Population distribution varies
6	Population Growth
	ENGAGE: Populations tend to increase in number
	EXPLORE: What factors regulate population growth?15
	EXPLORE: Populations can grow exponentially
	bacterial growth
	EXPLAIN: Exponential growth cannot usually be sustained18 EXPLORE: The environmental can limit population
	growth and size
	ELABORATE: A mathematical model for logistic growth
7	Madalian Demodation Operath
1	modeling Population Growth
•	ELABORATE: Computer simulations can be used to model
8	ELABORATE: Computer simulations can be used to model population growth
8	ELABORATE: Computer simulations can be used to model population growth
8	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem ENGAGE: What happened when wolves were introduced to Coronation Island? 23
8	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24
8	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the
8	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25
8	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem 21 ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26
8	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem 21 ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26 Species Interactions Can Begulate Populations 26
8 9	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations ENGAGE: Species interactions may limit or maintain
8	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations 27 ENGAGE: Species interactions may limit or maintain populations 27
9	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem 21 ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations 27 EXPLORE: Some species interactions are necessary for survival 27
8	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations 27 EXPLORE: Some species interactions are necessary for survival 28 EXPLAIN: Does resource competition limit the size of populations? 28
9 10	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem 21 ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations 27 EXPLORE: Some species interactions are necessary for survival 28 EXPLAIN: Does resource competition limit the size of populations? 28 Predation Can Control Some Populations 28
9 10	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem 21 ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations 27 EXPLORE: Species interactions may limit or maintain populations 27 EXPLORE: Some species interactions are necessary for survival 28 EXPLAIN: Does resource competition limit the size of populations? 28 Predation Can Control Some Populations ENGAGE: How does the ratio of predators to prey vary in a
9 10	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem 21 ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLORE: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations 27 EXPLORE: Some species interactions are necessary for survival 28 EXPLAIN: Does resource competition limit the size of populations? 28 Predation Can Control Some Populations 28 ENGAGE: How does the ratio of predators to prey vary in a predator/prey relationship? 29 EXPLORE: Case studies in predator-prey numbers 30
9 10	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem 21 ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations 27 EXPLORE: Species interactions may limit or maintain populations 27 EXPLORE: Some species interactions are necessary for survival 28 EXPLAIN: Does resource competition limit the size of populations? 28 Predation Can Control Some Populations 28 Predation Can Control Some Populations 28 ENGAGE: How does the ratio of predators to prey vary in a predator/prey relationship? 29 EXPLORE: Case studies in predator-prey numbers 30 Organisms Compete for Limited Resources
9 10	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem 21 ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations 27 EXPLORE: Species interactions may limit or maintain populations 27 EXPLORE: Some species interactions are necessary for survival 28 EXPLAIN: Does resource competition limit the size of populations? 28 Predation Can Control Some Populations 28 ENGAGE: How does the ratio of predators to prey vary in a predator/prey relationship? 29 EXPLORE: Case studies in predator-prey numbers 30 Organisms Compete for Limited Resources 29 ENGAGE: What is competition? 32
9 10	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem 21 ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations 27 EXPLORE: Species interactions may limit or maintain populations 27 EXPLORE: Some species interactions are necessary for survival 28 EXPLAIN: Does resource competition limit the size of populations? 28 Predation Can Control Some Populations 28 ENGAGE: How does the ratio of predators to prey vary in a predator/prey relationship? 29 EXPLORE: Case studies in predator-prey numbers 30 Organisms Compete for Limited Resources 28 ENGAGE: What is competition? 32 EXPLORE: Competition occurs both within and 32
9 10	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem 21 ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations 27 EXPLORE: Species interactions may limit or maintain populations 27 EXPLORE: Some species interactions are necessary for survival 28 EXPLAIN: Does resource competition limit the size of populations? 28 Predation Can Control Some Populations 29 EXPLORE: Case studies in predators to prey vary in a predator/prey relationship? 29 EXPLORE: Case studies in predator-prey numbers 30 Organisms Compete for Limited Resources 28 ENGAGE: What is competition? 32 EXPLORE: Competition occurs both within and between species 32
9 10	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem 21 ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAIN: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations 27 EXPLORE: Species interactions may limit or maintain populations 27 EXPLORE: Some species interactions are necessary for survival 28 EXPLAIN: Does resource competition limit the size of populations? 28 Predation Can Control Some Populations 29 EXPLORE: Case studies in predators to prey vary in a predator/prey relationship? 29 EXPLORE: Competition occurs both within and between species 32 EXPLORE: How could intraspecific competition limit population size? 33
9 10	ELABORATE: Computer simulations can be used to model population growth 21 The Carrying Capacity of an Ecosystem 21 ENGAGE: What happened when wolves were introduced to Coronation Island? 23 EXPLORE: What factors influence how many individuals an ecosystem can support? 24 EXPLORE: The density of a population can contribute to the regulation of its size 25 EXPLAR: Changes in carrying capacity influence population size 26 Species Interactions Can Regulate Populations 27 ENGAGE: Species interactions may limit or maintain populations 27 EXPLORE: Some species interactions are necessary for survival 28 EXPLAIN: Does resource competition limit the size of populations? 28 Predation Can Control Some Populations 29 ENGAGE: How does the ratio of predators to prey vary in a predator/prey relationship? 29 EXPLORE: Case studies in predator-prey numbers 30 Organisms Compete for Limited Resources 20 ENGAGE: What is competition? 32 EXPLORE: Competition occurs both within and between species 32 EXPLORE: How could intraspecific competition limit population size? 33 EXPLORE: How could intraspecific competition more intense at higher

	EXPLAIN: Why does intraspecific competition influence	04
	EXPLAIN: How has interspecific competition affected squirrel populations in the UK?	.34
	ELABORATE: Use a model to show the effect of competition between two species	.36
12	Human Activity Alters Populations ENGAGE: Human activity can affect the environment and	
	its organisms EXPLORE: The changing face of California's grasslands	.37 .38
	EXPLORE: How do roads affect populations?	.38 30
13	Producers Consumers and Food Webs	.03
10	ENGAGE : <i>Tyrannosaurus rex</i> was at the top of the food chain EXPLORE : Some organisms produce their own food,	.40
	others do not	.41
	ecosystem via food chains	.42
	EXPLAIN: How are food chains interconnected to make food webs?	.43
	ELABORATE: Use your knowledge of food webs to construct a model food web for a lake	.44
14	Energy in Ecosystems	
	ENGAGE: Energy cannot be created nor destroyed	.46
	EXPLORE: Energy inputs and outputs	.47
	EXPLAIN: How are ecological pyramids used to represent	0
	relationships between trophic levels?	.50
	information?	.50
	ELABORATE: Sustaining the mountain lion	.52
15	Nutrient Cycles	
	nutrient cycle	.53
	EXPLORE: Earth's biogeochemical cycles	.53
	EXPLAIN: Elements change form as they cycle	.55 .56
16	Humans Intervene in Nutrient Cycles	
	ENGAGE: Human activities can disrupt nutrient cycles	.57
	EXPLAIN: What are the consequences of altering	.57
	nutrient cycles?	.58
	the environment	.59
	EXPLORE: How do toxins move through food chains?	.60
47	EXPLAIN: How does mercury accumulate in a food chain?	.62
17	ENGAGE: Moving as a cohesive group can help individuals	
	and populations survive	.63
	EXPLORE: Conesive groups gain survival benefits	.63
	EXPLAIN: Why do migrating birds fly in V formation?	.65
18	Individuals in Groups Often Cooperate	~
	they work in groups	n .66
	EXPLORE: Examples of cooperative behaviors within species	67
	EXPLORE: Evidence of cooperation between species	.67
	in groups?	.68
	EXPLAIN: How does cooperative defense aid survival? EXPLAIN: How does cooperative food gathering	.69
	aid survival?	.70
	ELABORATE: Chimpanzees benefit from cooperative hunting	.71
19	An Endless Swarm Revisited	73
20	Summing Up	74
	. .	

Instructional Segment 2: History of the Earth's Atmosphere: Photosynthesis and Respiration

21	One of These Worlds is Not Like the Others ANCHORING PHENOMENON: The stability of artificial	
	ecosystems relative to the Earth	81
22	Energy in the Cell	00
	EXPLORE: Energy for metabolism	oz 83
	EXPLAIN: How ATP provides energy	84
23	Photosynthesis	
	ENGAGE: Man in a box	85
	EXPLORE: Photosynthesis and carbon dioxide:	86
ŏ	EXPLORE: The product of photosynthesis	88
	EXPLORE: Water and photosynthesis	89
	EXPLAIN: Chloroplasts	90
	EXPLAIN: Photosynthesis is actually two sets of reactions	91
	ELABORATE: The fate of glucose	92
24	Cellular Respiration	02
	EXPLORE: Oxygen and respiration	93 94
-	EXPLORE: Cellular respiration	97
	EXPLAIN: How does cellular respiration provide energy? ELABORATE: Aerobic and anaerobic pathways	98
	for ATP production	99
	ELABORATE: Anaerobic respiration in	100
05	Medaling Deteourthesis and Callular Despiration	100
25	EXPLORE: The connection between photosynthesis	101
00	and cellular respiration.	101
26	EXPLORE: Treating sewage	105
	EXPLORE : Making a model wastewater treatment plant	105
	EXPLORE: Modeling microbial activity in sewage treatment	108
27	How Old is the Earth?	
21	ENGAGE : Lyell, Etna, some shellfish, and the age	
	of the Earth	109
	EXPLORE: Relative and absolute dating	111
	ELABORATE: Determining the age of rocks and fossils	112
28	The Coevolution of Earth's Systems	
	ENGAGE: The Earth's lungs	113
	EXPLORE: Photosynthesis, iron, and a snowball	114
	EXPLORE: Swamps, coal, and more snow	115
	EXPLORE: Life makes soil	116 117
	EXPLAIN: The coevolution of Earth's systems	118
29	Carbon Cycling	
	ENGAGE: Biosphere 2 and its carbon problem	120
	EXPLORE. Carbon on Earth	120
30	Modeling the Carbon Cycle	
•	ENGAGE: Making a closed ecosystem EXPLAIN: Photosynthesis affects the carbon cycle	123 124
31	How Carbon Dioxide Affects the Oceans	
	ENGAGE: Acids and bases	126
	EXPLORE: CO ₂ and water	127 127
	EXPLAIN: CO ₂ and shellfish	128
32	Fossil Fuels and the Environment	
	ENGAGE: CO ₂ and cars	129
	EXPLORE: Fossil fuels	129 130
	EXPLORE: Fossil fuels are ancient	130
	EXPLAIN: Why use fossil fuels?	131
	EXPLAIN . The cost of extraction	132

33	Revisiting Model Worlds	133
34	Summing Up	134

Instructional Segment 3: Evidence of Common Ancestry and Diversity

35	The Rise of the Tyrants ANCHORING PHENOMENON: Fossils and diversity over time	141
36	What are Fossils and How Do They Form? ENGAGE: Fossils are part of the geosphere	142
	EXPLORE: Understanding past events and the Principle	
	of Superposition	143
~~		140
37	Erosion Snapes the Landscape	144
	EXPLORE: Modeling the effect of water on the landscape	144
	EXPLORE: Shaping the Earth	147
	EXPLAIN: Weathering and erosion	148
	EXPLAIN: Surface area affects weathering	150
	ELABORATE: Interpreting past environments	152
	EVALUATE: Coastal erosion	153
	EVALUATE: California's water management challenges	156
38	Evidence for Evolution	
	ENGAGE: A horse is a horse, of course, of course	158
	EXPLORE: Homologous structures	158
	EXPLORE: The pentadactyl limb	159
	relationships?	160
	EXPLORE: Proteins can show evolution	161
	EXPLORE: Shared stages of development reflect	
	common ancestry	162
	of evolution	162
	EXPLORE: The fossil record documents stages in	102
	evolutionary history	163
	EXPLAIN: Common ancestry	165
39	All Life is Related	
	ENGAGE: There is a universal genetic code	166
	explore: How do we know about the relatedness	166
40	Notural Coloction	100
40	ENGAGE: Variability in populations	168
	EXPLORE: Populations and the production of offspring	169
	EXPLORE: Variation	169
	EXPLORE: Natural selection and inheritance	170
	EXPLORE: Selection for insecticide resistance	171
	EXPLORE: Selection in Main's	172
	EXPLAIN: Adaptations and fitness	174
	ELABORATE: Adaptations and environment:	176
41	Speciation	
	ENGAGE: What is a species?	178
	EXPLORE : The species is the basic unit of classification	179
	EXPLORE: Evolutionary history can define species	180
	EXPLORE. Isolation can lead to speciation	182
	EXPLAIN: Patterns of evolution	183
	EVALUATE: Do changes in the environment lead	
	to evolution?	184
42	The Extinction of Species	
	EXPLORE: Extinction is a natural process	185
	EXPLAIN: How have humans affected extinction rates?	180
43	SNAPSHOT: Antibiotic Resistance	100
	ENGAGE: MHSA	186
	EXPLORE: Spreading antibiotic resistance	189
	EXPLORE: Model the spread of antibiotic resistance	190
	EXPLORE: Rates of resistance	191

44	SNAPSHOT: Human Evolution ENGAGE: Why us? EXPLORE: Aspects of human evolution EXPLORE: Climate change EXPLORE: Physical changes in human evolution EXPLORE: Molecular evidence of human evolution EXPLORE: Human cultural evolution EXPLAIN: Where did we come from?	192 192 193 195 197 199 201
45 •	Continental Drift ENGAGE: Modeling continental drift EXPLORE: Continental drift	202 205
46	The Rise of the Tyrants Revisited	209
47	Summing Up	210
	Instructional Segment 4: Inheritance of Traits	
48	Pale and Interesting ANCHORING PHENOMENON: Albinism is widespread throughout the animal kingdom	217
49	Experiments Showed DNA Carries the Code ENGAGE: Experiments with a bacterium showed that DNA is the material of inheritance	219 219
	EXPLAIN: How did the work of many scientists contribute to the discovery of DNA's structure	221
50	Modeling the Structure of DNA ENGAGE: Models can be used to show DNA structure	222
•	EXPLORE: Building physical models helps to understand the structure of DNA	223
51	Genome Studies ENGAGE: Thomas Hunt Morgan's fruit fly breeding experiments EXPLORE: What are traits? EXPLORE: Genes are located on chromosomes EXPLAIN: What can mutations tell us about gene function?	227 227 228 229
52	Modern Genetics ENGAGE: Polycystic kidney disease	230 231 232 233 233
53	Variation ENGAGE: Individuals within a population vary EXPLORE: How does variation arise? EXPLORE: Examples of genetic variation	235 236 237
54	Sexual Reproduction Produces Genetic Variation ENGAGE: Why do some species show more variation than	
•	others? EXPLORE: How does variation arise in sex cells? EXPLORE: Use a model to understand how meiosis produces variation	238 238 241
	EXPLAIN: Genetic variability is reduced by linked genes? EXPLAIN: How do abnormal chromosome numbers arise?	243 244
55	Mutations Produce Variation ENGAGE: Sickle cell red blood cells EXPLORE: The effect of mutations EXPLORE: How do mutations alter phenotype? EXPLAIN: The physiological changes caused by sickle cell disease EXPLAIN: How does the CCR5 mutation provide protection from HW2	245 245 246 247
56	Mondelian Genetice	249
•	ENGAGE: Can you roll your tongue? EXPLORE: ACHOO syndrome EXPLORE: Mendel's pea experiments EXPLORE: Monohybrid cross EXPLORE: The test cross EXPLORE: Probability EXPLORE: Probability EXPLAIN: Sickle cell inheritance patterns	250 251 252 254 255 256 257

	EXPLORE: Dihybrid cross	258
	EVALUATE: Testing the outcome of genetic crosses	260
57	Padierea Analysia	200
57	ENGAGE: Lactose intolerance	262
	EXPLORE: Pedigree charts	262
	EXPLORE: Pedigree charts are used to determine	
	inheritance patterns	263
	Explain. The internance of factose intolerance	204
58	Environment influences Phenotype	265
	EXPLORE: What factors influence phenotype?	266
	EXPLAIN: How does environment alter phenotype?	267
	EXPLAIN: Our ancestors' environment can have an	
	effect on future generations	268
59	Natural Selection Acts on Phenotype	270
60	Polo and Interacting Poviaited	270
00		272
61	Summing Up	273
	Instructional Segment 5:	
	Structure, Function, and Growth	
62	A Cancerous Creep	
	ANCHORING PHENOMENON: Breast cancers are cell	
	masses distinct from the tissue around them	280
63	Cells and Life	
	ENGAGE: Classifying life	281
	EXPLORE: The cell theory	281
	EXPLORE: Cells	283
	EXPLAIN: Why be Multicellular?	285
64	Cells, Tissues, and Organs	
	ENGAGE: You start from just one cell	287
	EXPLORE: Differentiating cells	287
	ELABORATE: Stem cells and skin renewal	289 290
	ELABORATE: Making synthetic skin	291
	ELABORATE: Tissues work together	292
	EVALUATE: Developing a model for structural hierarchy	203
6E		200
00	ENGAGE: How do body systems interact?	294
	EXPLORE: Flex your muscles	295
	EXPLORE: Breathe!	296
	EXPLAIN: Circulation and gas exchange	297
66	How Cells Make Proteins	000
	EXPLORE: Proteins are made of amino acids	299 200
	EXPLORE: Proteins fold up into a functional structure	300
	EXPLORE: Gene expression	302
	EXPLORE: The genetic code	302
~	EXPLAIN. The steps in making a functional protein	304
67	The Functions of Proteins	305
	EXPLORE: The shape of a protein determines its function	305
	EXPLORE: Protein functions	306
68	Proteins Do Work in Cells	
	ENGAGE: Cellular membranes are bumpy	310
	EXPLORE: Cellular membranes	310
	membranes	311
	EXPLORE: Proteins have catalytic jobs too	313
69	How Do We Know What Proteins Do?	
-	ENGAGE: Missing a protein?	315
	EXPLORE: Metabolic pathways	315
	EXPLORE: Animal models for defective genes	316 317
	ELABORATE: Investigating the effect of a gene mutation	318
	ELABORATE: Cystic fibrosis	319

-	-	-
((-	h
~	\sim	$\mathbf{\nabla}$

6			
	70	DNA Replication	320
		ENGAGE: Models of DNA replication	321
		EXPLORE: How DNA replicates	322 324
	71	Growth and Benair of Cells	
	<i>.</i>	ENGAGE: Wounded!	326
		EXPLORE: Healing	326
	70	EXPLAIN: Cell growth and repair	327
	72	ENGAGE: Cell division	328
		EXPLORE: Stages of the cell cycle	328
		EXPLORE: Modeling the cell cycle	329
		EXPLORE: The cell cycle is regulated	329 330
	_	EXPLORE: Mitosis is a stage of the cell cycle	330
	•	EXPLORE: Stages in mitosis	331 333
	73	Keening in Balance	000
	15	ENGAGE: A balancing act	334
		EXPLORE: Changes during exercise	335
	•	EXPLORE: Are the changes during exercise significant? EXPLORE: Maintaining homeostasis	336 338
	_	EXPLORE: Keeping warm and cooling down	340
		EXPLORE: Modeling the effect of insulation	341 242
		ELABORATE: How does body shape help regulate	545
	-	temperature?	344
		ELABORATE: Body shape influences heat loss	346
	74	ENGAGE: A cascade	347
		EXPLORE: Diseases may have many effects	348
		EXPLAIN: Medical technology and disease	349
	75	A Cancerous Creep Revisited	349
	76	Summing Up	351
		Instructional Segment 6:	
		Ecosystem Stability and the Response	
		to Climate Change	
	77	Weather Whiplash	
		ANCHORING PHENOMENON: What causes extreme	250
	70		300
	18	ECOSYSTEM Dynamics ENGAGE: The vine that ate the South	357
		EXPLORE: Ecosystems are dynamic	358
		EXPLORE: What is ecosystem stability?	359 360
		EXPLORE: A case study in resilience: Spruce budworm	000
		and balsam fir	361
		ecosystem stability than others?	362
	79	Climate Change	
		ENGAGE: The glaciers are retreating!	363
	•	EXPLORE: What factors influence atmospheric temperature? EXPLORE: Creating models of the Earth's energy budget	364 365
		EXPLORE: The Greenhouse Effect	367
		EXPLAIN: Why are greenhouse gases increasing?	368
		LAF LAIN. What is the relationship between greenhouse	

80	Feedback Systems

	ENGAGE: Sea ice in retreat	370
	EXPLORE: Feedback in Earth's systems	370
	EXPLORE: Modeling the effect of albedo on ice	
	sheet melting	371
	EXPLORE: Visualizing the albedo effect	372
	EXPLORE: Sea ice melting	373
81	Models of Climate Change	
	ENGAGE: Can climate models help prevent tragedies?	374
	EXPLORE: What is a climate model?	374

gases and global warming? 369

	EXPLAIN: Using climate models to predict change EXPLAIN: Using climate models to predict sea level rise EXPLAIN: How are climate models used to predict distribution changes?	377 378 379 380 381
82	Solutions to Climate Change	
	ELABORATE: How can new technologies be used to slow climate change? EVALUATE: Designing and evaluating climate	382
	change solutions	384
83	Human Impact on Ecosystems ENGAGE: Flood! EXPLORE: Case study: The effect of sea level rise on the	385
	Everglades	385
	EXPLORE: How does human activity affect ecosystems?	387
	EXPLORE: Future proofing California's water supply	388
	FLABORATE : Climate change and disease	390
	EVALUATE: Designing a solution to a real world problem	393
84	Weather Whiplash Revisited	394
85	Summing Up	395

SEP Support: Basic Skills for Students in Life Science

92 93 Dealing With Large Numbers 407 95 Describing Data 409

Suggested strategies for pacing

- Following the framework's progression, move sequentially through the book (IS1 to IS6). This might seem obvious, but teachers all have their own reasons for beginning with specific topics first.
- Don't forget to build in time to complete activities in the SEP/skills chapter as required.
- Use the first 6 activities as a guide to time taken vs total time allocated for the program. Next block out time using this extended contents based on the performance of your own students.
- Green dots indicate investigations. These can usually be completed within one hour or less.
- Red flags show where teacher guidance may be needed or where gifted students can work ahead.

List of Practical Investigations In The Living Earth

IS 1: Ecosystem Interactions and Energy

INVESTIGATION 1.1 Creating a model of logistic growth

INVESTIGATIONS 1.2–1.4 Population growth models

INVESTIGATION 1.5 Exploring biomass pyramids

INVESTIGATION 1.6 Pathways for toxins in food webs

IS 2: History of the Earth's Atmosphere: Photosynthesis and Respiration

INVESTIGATION 2.1 Carbon dioxide use by *Cabomba*

INVESTIGATION 2.2 Measuring bubble production in *Cabomba*

INVESTIGATION 2.3 The iodine test for starch

INVESTIGATION 2.4 Testing leaves for starch

INVESTIGATION 2.5 Measuring respiration in germinating seeds

INVESTIGATION 2.6 Modeling photosynthesis and respiration

INVESTIGATION 2.7 Designing a wastewater treatment plant

INVESTIGATION 2.8 Use of glucose by *Saccharomyces* yeast

INVESTIGATION 2.9 Using M&Ms[®] to model half lives

INVESTIGATION 2.10 Model of the carbon cycle

INVESTIGATION 2.11 Measuring the pH of substances

INVESTIGATION 2.12 How does dry ice affect pH?

IS 3: Evidence of Common Ancestry and Diversity

INVESTIGATION 3.1 Using stream trays to model erosion

INVESTIGATION 3.2 Surface area and limestone dissolution

INVESTIGATION 3.3 Investigation coastal erosion

INVESTIGATION 3.4 Investigation coastal defenses

INVESTIGATION 3.5 Phenotypic variation in your class

INVESTIGATION 3.6 Modeling selection with M&Ms®

INVESTIGATION 3.7 Modeling antibiotic resistance

INVESTIGATION 3.8 Making square world

INVESTIGATION 3.9 Modeling continental drift

IS 4: Inheritance of traits

INVESTIGATION 4.1 Making a DNA model

INVESTIGATION 4.2 Modeling meiosis using popsicle sticks

INVESTIGATION 4.3 Achoo syndrome

IS 5: Structure, Function, and Growth

INVESTIGATION 5.1 Forearm movements

INVESTIGATION 5.2a-5.2b Gas exchange system model

INVESTIGATION 5.3 Protein denaturation

INVESTIGATION 5.4 Modeling protein structure

INVESTIGATION 5.5 Effect of temperature on enzyme activity

INVESTIGATION 5.6 Modeling meiosis

INVESTIGATION 5.7a Changes in heart and breathing rates

INVESTIGATION 5.7b Evaluating the effect of exercise on heart rate

INVESTIGATION 5.8 Modeling the effect of insulation

INVESTIGATION 5.9 Body shape and temperature gain/ loss

IS 6: Ecosystem Stability and the Response to Climate Change

INVESTIGATION 6.1 Factors influencing atmospheric temperature

INVESTIGATION 6.2 Albedo and ice sheet melting

INVESTIGATION 6.3 Effect of temperature on *Vibrio* doubling time

Summary of BIOZONE's 3D Approach By Chapter

CG8

Science and Engineering Practices (SEPs), Crosscutting Concepts (CCCs), Disciplinary Core ideas (DCIs), and Performance Expectations (PEs) for Instructional Segments 1-6 of the CA NGSS (Three Course Model) are summarized below. A concluding basic skills chapter, which covers some of the background for Science and Engineering Practices, is also included. Performance Expectations (PEs) are met within activities and/or the summing up activities concluding each Instructional Segment.

Page		Activity	Hub	SEP	DCI	CCC	PE			
1		IS1: Ecosystem Interactions and Energy								
2	1	An Endless Swarm	\checkmark							
3	2	The Earth's Systems	\checkmark	2	LS2.A	4				
5	3	Abiotic Factors Influence Distribution	\checkmark	4, 5	LS2.A	2				
10	4	The Ecological Niche	\checkmark	4, 6	LS2.A	2				
13	5	Populations Have Varied Distributions	\checkmark	2	LS2.A					
15	6	Population Growth	\checkmark	3, 4, 5, 6	LS2.A	4, 7	HS-LS2-1, HS-LS2-2			
21	7	Modeling Population Growth	\checkmark	2,3	LS2.A	2, 7	HS-LS2-2			
23	8	The Carrying Capacity of an Ecosystem	\checkmark	2, 4, 5	LS2.A	2, 3, 5, 7	HS-LS2-1			
27	9	Species Interactions Can Regulate Populations	\checkmark	4	LS2.A	2	HS-LS2-2			
29	10	Predation Can Control Some Populations	\checkmark	4	LS2.A	2, 3, 5	HS-LS2-2, HS-LS2-4			
32	11	Organisms Compete for Limited Resources	\checkmark	2, 3, 4	LS2.A	2, 3, 5	HS-LS2-2			
37	12	Human Activity Alters Populations	\checkmark	6	LS2.C	2, 5				
40	13	Producers, Consumers, and Food Webs	\checkmark	2	LS2.B	5				
46	14	Energy in Ecosystems	\checkmark	2, 3, 4, 5	LS2.B	5	HS-LS2-4			
53	15	Nutrient Cycles	\checkmark	5	LS2.B	5	HS-LS2-4			
52	16	Humans Intervene in Nutrient Cycles	\checkmark	3, 5, 8	LS2.C	3, 5	HS-LS2-2			
63	17	Group Behavior Improves Survival	\checkmark	7	LS2.D	4, 5	HS-LS2-8			
66	18	Individuals in Groups Often Cooperate	\checkmark	7	LS2.D	4, 5	HS-LS2-8			
73	19	An Endless Swarm Revisited								
74	20	Summing Up	\checkmark	5, 7	LS2.A, LS2.B, LS2.D	2, 3, 5	HS-LS2-2, HS-LS2-4, HS-LS2-8			

Page		Activity	Hub	SEP	DCI	CCC	PE			
79	79 IS2: History of the Earth's Atmosphere: Photosynthesis and Respiration									
81	21	One of These Worlds is Not Like the Others	\checkmark			3, 4				
79	22	Energy in the Cell	\checkmark	2	LS1.C	5				
85	23	Photosynthesis	\checkmark	2, 3, 6	LS1.C	5	HS-LS1-5, HS-LS1-6			
93	24	Cellular Respiration	\checkmark	3, 6	LS1.C LS2.B	5	HS-LS1-7, HS-LS2-3			
101	25	Modeling Photosynthesis and Cellular Respiration	\checkmark	2	LS1.C, LS2.B	5	HS-LS1-5, HS-LS1-6, HS-LS1-7			
105	26	Putting Biological Processes To Work	\checkmark	2, 3, 6, 8	LS2.B ETS1.B	5	HS-LS2-3			
109	27	How Old is the Earth?	\checkmark	2, 3, 6	ESS1.C	5, 7	HS-ESS1-6			
113	28	The Coevolution of Earth's Systems	\checkmark	7	ESS2.E	4, 7	HS-ESS2-7			
120	29	Carbon Cycling	\checkmark	2, 6	LS2.B, ESS2.D	2, 4, 5	HS-ESS2-6			
123	30	Modeling the Carbon Cycle	\checkmark	2, 3, 6	LS2.B ESS2.D	2, 4, 5	HS-ESS2-6			
126	31	How Carbon Dioxide Affects the Oceans	\checkmark	3, 6	LS2.A, LS2.B	2	Assessed in IS6			
129	32	Fossil Fuels and the Environment	\checkmark	2, 6	LS1.C	5, 7	HS-LS1-6			
133	33	Revisiting Model Worlds	\checkmark	2	LS2.B	3, 4				
134	34	Summing Up		2, 6, 7	LS1.C, LS2.B, ESS1.C, ESS2.D, ESS2.E	4, 5, 7	HS-LS1-5, HS-LS1-6, HS-LS1-7, HS-LS2-3, HS-ESS1-6, HS-ESS2-6, HS-ESS2-7			

Page		Activity	Hub	SEP	DCI	CCC	PE				
139	IS3: Evidence of Common Ancestry and Diversity										
141	35	The Rise of the Tyrants	\checkmark								
142	36	What are Fossils and How Do They Form?	\checkmark	4	LS4.A	2, 6, 7					
144	37	Erosion Shapes the Landscape	\checkmark	1, 2, 3, 4, 6	ESS2.C ETS1.B	2,3,7	HS-ESS2-5, HS-ETS1-3				
158	38	Evidence for Evolution	\checkmark	7, 8	LS4.A	1, 2, 6	HS-LS4-1				
166	39	All Life is Related	\checkmark	7, 8	LS4.A	1, 6					
168	40	Natural Selection	\checkmark	2, 3, 4, 6	LS4.B, LS4.C	1, 2, 7	HS-LS4-2, HS-LS4-3, HS-LS4-4				
178	41	Speciation	\checkmark	6, 7	LS4.C	1, 2, 7	HS-LS4-5				
185	42	The Extinction of Species	\checkmark	7	LS4.C	2	HS-LS4-5				
188	43	SNAPSHOT: Antibiotic Resistance	\checkmark	2, 6, 7	LS4.C	1, 7	HS-LS4-5				
192	44	SNAPSHOT: Human Evolution	\checkmark	1, 2	LS4.C	2					
		EXPLORE: Climate change	\checkmark	1, 4, 7, 8	ESS2.E, ESS3.D	7					
		EXPLORE: Physical changes in human evolution	~	1, 4, 7, 8	LS1.A, LS4.A, ESS1.C	6					
		EXPLORE: Molecular evidence of human evolution	\checkmark	1, 4, 7, 8	LS4.A	1					
		EXPLORE: Human cultural evolution	\checkmark	1, 4, 7, 8	LS2.D	2					
		EXPLAIN: Where did we come from?					HS-LS4-5				
202	45	Continental Drift	\checkmark	2, 7	ESS2.B	2					
209	46	The Rise of the Tyrants Revisited									
203	47	Summing Up	~	6, 7, 8	LS4.A, LS4.C, ESS1.C, ESS3.A, ESS3.B	1, 2	HS-LS4-1, HS-LS4-4, HS-LS4-5, HS-ESS3-1,				

Page		Activity	Hub	SEP	DCI	CCC	PE
217		IS4: Inheritance of Traits					
218	48	Pale and Interesting	\checkmark				
219	49	Experiments Showed DNA Carries the Code	\checkmark	1, 8	LS1.A, LS3.A	2	HS-LS3-1
222	50	Modeling the Structure of DNA	\checkmark	2, 3	LS1.A, LS3.A	2	
227	51	Genome Studies	\checkmark	1, 7	LS3.A, LS3.B	2	
230	52	Modern Genetics	\checkmark	1, 8	LS3.A. ETS1.B	2	HS-LS3-1
235	53	Variation	\checkmark	6, 7	LS3.B	2	
238	54	Sexual Reproduction Produces Genetic Variation	\checkmark	2, 3, 6, 7	LS3.B	2	
245	55	Mutation Produces Variation	\checkmark	7	LS3.B	2	
250	56	Mendelian Genetics	\checkmark	2, 3, 4, 5	LS3.B	3	HS-LS3-3
265	57	Pedigree Analysis	\checkmark	2, 7	LS3.B	1	HS-LS3-1
259	58	Environment Influences Phenotype	\checkmark	5, 7	LS3.B	2	
270	59	Natural Selection Acts on Phenotype	\checkmark	4, 6	LS4.B, LS4.C	1, 2	HS-LS4-2, HS-LS4-3
272	60	Pale and Interesting Revisited	\checkmark				
268	61	Summing Up	\checkmark	4, 7	LS3.B, LS4.B, LS4.C	1, 2	HS-LS3-2, HS-LS4-3,

CG10	CG10								
	Page		Activity	Hub	SEP	DCI	CCC		PE
	278		IS5: Structure, Function, and	Growt	h				
	280	62	A Cancerous Creep	\checkmark					
	281	63	Cells and Life	\checkmark	2, 6	LS1.A,	6		
	287	64	Cells, Tissues, and Organs	\checkmark	2, 6	LS1.A, LS2.B	6	HS-LS	S1-2, HS-LS1-4
	294	65	Interacting Systems	\checkmark	2, 3	LS1.A	6		
	299	66	How Cells Make Proteins	\checkmark	2, 3, 6	LS1.A	6		
	305	67	The Functions of Proteins	\checkmark	2, 6	LS1.A	6		
	310	68	Proteins Do Work in Cells	~	2, 3, 6	LS1.A, ETS1.B	5, 6		
	315	69	How Do We Know What Proteins Do?	\checkmark	4, 6	LS1.A	2, 6		
	321	70	DNA Replication	\checkmark	2, 4	LS1.B	6		
	326	71	Growth and Repair of Cells	\checkmark	2, 4	LS1.B	6, 7	HS-LS	S1-4
	328	72	The Cell Cycle	\checkmark	2, 4	LS1.B	7		
	334	73	Keeping in Balance	~	1, 2, 3, 6	LS1.A	4, 7	HS-LS	61-3
	347	74	Disease Affects Interactions	\checkmark	2, 8	LS1.A	2, 7		
	350	75	A Cancerous Creep Revisited	\checkmark					
	351	76	Summing Up	\checkmark	2, 6	LS1.A, LS1.B	4, 6	HS-LS	S1-1, HS-LS1-2, HS-LS1-4
	Page		Activity	Hub	SEP	DCI	CCC		PE
	355		IS6: Ecosystem Stability and	Respo	onse to	Climate Cha	nge		
	356	77	Weather Whiplash	\checkmark					
	357	78	Ecosystem Dynamics	\checkmark	2, 7	LS2.C, LS4.C	7	HS-ES	SS4-5
	363	79	Climate Change	~	2, 3, 4, 5	ESS3.C, ESS3.D	3, 7		
	370	80	Feedback Systems	\checkmark	2, 3	ESS3.D	2, 4, 7		
	374	81	Models of Climate Change	~	4, 7	LS4.C, ESS3.D, ETS1.B	2, 4, 7		
	382	82	Solutions for Climate Change	\checkmark	6	LS2.C, LS4.D, ESS3.C, ETS1.B	4, 7	HS-LS	S2-7, HS-ESS3-4
	385	83	Human Impact on Ecosystems	\checkmark	3, 5, 6	LS2.C, LS4.D, ESS3.D, ETS1.B	2, 4, 7	HS-E	SS3-6, HS-ETS1-3
	381	84	Weather Whiplash Revisited						
	382	85	Summing Up	\checkmark	4, 7	ESS3.D	7	HS-LS	S2-6, HS-ESS3-5
	Paga		Activity		U .	ub SED	DCI	000	DE
	300		SEDe: Basic Skills for Studer	ate in l	life Sci		DOI	000	
				AS IT I					
	400	86	How Do We Do Science?		v	1, 6, 7, 8		4	NA
	401	87	Systems and System Models		۷ م	2		4	NA
	402	00	Accuracy and Provision	umption	S v				NA
	403	09				-			NA
	404	90	Working With Numbers			5			NA
	405	91	Tallies, Percentages, and Rates			5			NA
	406	92	Fractions and Ratios			5			NA
	407	93	Dealing with Large Numbers		v	5			NA
	408	94	Apparatus and Measurement			3			
	409	95	Veriebles and Control		v				
	411	90	variables and Controls			3			
	412	9/	Interpreting Line Graphs		v	4, 5			NA
	414	90	Mean Median and Meda			4, 5			NA
	416	100	Can You Trust Your Data?		,	4, 5			NA
	418	101	Detecting Bias in Samples			4.5			NA

Identifying CA CCSS Connections

The activities in *The Living Earth* provide many opportunities to address the California Common Core State Standards (CA CCSS) for numeracy, literacy, and English language development (ELD). The incorporation of these standards allows students to practice and develop these key skills while exploring science.

Activities incorporating the CA CCSS Math Connections, ELA/ literacy, and ELD Connections specified in the California Science Framework are identified by codes (right) in the **Teacher's Edition** and **Teacher's Digital Edition**. Note that this coding is a tool for the teacher and is not present in the Student Edition.

- A red calculator indicates a math connection.
- A blue pencil indicates an ELA/literacy or ELD connection.

A list of the specific Math Connections, ELA/ Literacy Connections and ELD Standards addressed in the CA NGSS framework can be found in the tables at the bottom of this page and on the following page.

BIOZONE recognizes that CA ELD Standards are not to be used in isolation, and are intended to be implemented in conjunction with ELA/Literacy and other academic content standards. You will see them appearing along with the relevant ELA/ literacy connection in the following tables.

IS1: Ecosystem Interactions and Energy

Activity number	Activity	CA CCSS Math connection	CA CCSS ELA/Literacy & ELD connection
3	Abiotic Factors Influence Distribution	N-Q.1, S-IC.6, MP.4	RST.11-12.1, 8, WHST.9-12.2 ELD.P1.11-12.1, 5, 6, 9, 10, 11
6	Population Growth	N-Q.1, MP.4	
8	The Carrying Capacity of an Ecosystem	N-Q.1, MP.4	
9	Species Interactions Can Regulate Populations		RST.11-12.7, WHST.9-12.2 ELD.P1.11-12.1, 5, 9, 10
10	Predation Can Control Some Populations	N-Q.1, S-IC.6, MP.4	
11	Organisms Compete for Limited Resources	S-IC.6	
16	Humans Intervene in Nutrient Cycles	S-IC.6	
17	Group Behavior Improves Survival	S-IC.6	
18	Individuals in Groups Often Cooperate	N-Q.1, S-IC.6, MP.4	
20	Summing Up	S-IC.6	

IS2: History of the Earth's Atmosphere: Photosynthesis and Respiration

Activity number	Activity	CA CCSS Math connection	CA CCSS ELA/Literacy & ELD connection
23	Photosynthesis	N-Q.1, MP.4	
24	Cellular Respiration	N-Q.1, MP.4	
27	How Old is the Earth?	N-Q.1, MP.4	
28	The Coevolution of Earth's Systems		WHST.11-12.2, 9, ELD.P1.11-12.1, 5, 11
30	Modeling the Carbon Cycle	N-Q.1, MP.4	
32	Fossil Fuels and the Environment		ELD.P1.11-12.1, 5
34	Summing Up	N-Q.1, MP.4	

IS3: Evidence of Common Ancestry and Diversity

Activity number	Activity	CA CCSS Math connection	CA CCSS ELA/Literacy & ELD connection
36	What Are Fossils and How Do They Form?		SL.11-12.4, ELD.P1.11-12.1, 5
37	Erosion Shapes the Landscape	MP.4	RST.11-12.1, WHST.9-12.7, 9 ELD.P1.11-12.1, 6
38	Evidence for Evolution		SL.11-12.4, RST.11-12.1, WHST.9-12.7, 9, ELD.P1.11-12.1, 5, 11
40	Natural Selection	MP.4	ELD.P1.11-12.1, 5
44	SNAPSHOT: Human Evolution		SL.11-12.4, WHST.9-12.7, 9 ELD.P1.11-12.1, 5, 11
47	Summing Up	MP.4	

IS4: Inheritance of Traits

Activity number	Activity	CA CCSS Math connection	CA CCSS ELA/Literacy & ELD connection
49	Experiments Showed DNA Carries the Code		RST.11-12.9, WHST.9-12.2, 7, 9 ELD.P1.11-12.1, 5, 6, 11
52	Modern Genetics		RST.11-12.9, WHST.9-12.7 ELD.P1.11-12.1, 5, 9
53	Variation	MP.4	
58	Environment Influences Phenotype	MP.4	ELD.P1.11-12.1, 5
59	Natural Selection Acts on Phenotype	MP.4	

IS5: Structure, Function, and Growth

Activity number	Activity	CA CCSS Math connection	CA CCSS ELA/Literacy & ELD connection
62	A Cancerous Creep		WHST.9-12.7, ELD.P1.11-12.1, 5
67	The Functions of Proteins		WHST.9-12.7, 9
70	DNA Replication		ELD.P1.11-12.1, 5
71	Growth and Repair of Cells	MP.4	
73	Keeping in Balance	S-ID.2, MP.4	ELD.P1.11-12.10
74	Disease Affects Interactions		WHST.9-12.7, ELD.P1.11-12.1, 5
75	A Cancerous Creep Revisited		ELD.P1.11-12.10

IS6: Ecosystem Stability and Response to Climate Change

Activity number	Activity	CA CCSS Math connection	CA CCSS ELA/Literacy & ELD connection
77	Weather Whiplash		WHST.9-12.7, ELD.P1.11-12.10
78	Ecosystem Dynamics		WHST.9-12.7, ELD.P1.11-12.10
79	Climate Change	S-IC.6	
80	Feedback Systems	N-Q.1, S-IC.6, MP.4	
81	Models of Climate Change	S-IC.6	
82	Solutions to Climate Change		WHST.9-12.7, ELD.P1.11-12.1, 5, 10, 11
83	Human Impact on Ecosystems	N-Q.1, S-IC.6, MP.4	ELD.P1.11-12.1, 5, 10
85	Summing Up	S-IC.6	

SEPs: Basic Skills for Students in Life Science

Activity number	Activity	CA CCSS Math connection	CA CCSS ELA/Literacy & ELD connection
86	How Do We Do Science?		SL.911-12.1, ELD.P1.11-12.1, 5,
93	Dealing with Large Numbers	N-Q.1, MP.4	
95	Describing Data	S-ID.2	
97	Drawing Graphs	N-Q.1, MP.4	
98	Interpreting Line Graphs	S-ID.7	
99	Mean, Median, and Mode	S-ID.2	
100	Can You Trust Your Data?	MP.4	
101	Detecting Bias in Samples	S-ID.3	

Identifying Learning Intentions and Goals

In developing *The Living Earth*, we have embraced the three dimensions of the CA NGSS framework, emphasizing the application of concepts and skills to the understanding of phenomena. The activities in *The Living Earth* have been specifically designed to address the **disciplinary core ideas**, science and engineering practices, and crosscutting concepts in a way that helps students to meet specific performance expectations.

All three dimensions of the standards are identified and color coded in the chapter introduction text in both the Teacher's Edition and Teacher's Digital Edition (below). The performance expectations and California Environmental Principles and Concepts are also identified. Note that this coding is a tool for the teacher and is not present in the Student Edition.

Using the Contents: Planning and Pacing

The contents pages are not merely a list of the activities in the student edition. Encourage your students to use them as a planning tool for their program of work. Students can identify the activities they are to complete and then tick them off when completed. The teacher can also see at a glance how quickly the student is progressing through the assigned material. Teacher's can use the extended version of the content to create a pacing guide.

Contents	IS4	Inheritance of Traits	
Using This Book	ridence of Comm do Diversity udent Questions icHORING PHENOMEN hat are Fossils and Hov on Shapes the Land mee For Evolution te is Related	Student Questions 2 ANCHORING PHENOMENON 2 Pale and Interesting 2 Experiments Showed DNA Carries 2 the Code 2 Modeling the Structure of DNA 2 Genome Studies 2 Modern Genetics 2 Variation 2 Sexual Reproduction Produces 2 Genetic Variation 2 Mutation Produces Variation 2 Mendelian Genetics 2	217 218 219 222 227 230 235 238 245 250
be more personally organized in their work.	riments Showed DN. ode	Pedigree Analysis2 Environment Influences Phenotype	262 265 270
21 AICHORING PHENOMENON 54 55 One of These Worlds Is Not Like the Others	xual Reproduction Produces enetic Variation	The teacher has an alternative design challenge of their own th wish to use, so they indicate to t students to miss out this activity The teacher can see at a glance this student is progressing throu this unit of work. Any concerns of progress can be addressed earl	ey the : e ho igh with y.

What about a pacing guide?

The 9-12 Ca-NGSS framework is fluid in terms of the grade in which each program is offered, so in many respects defies a rigid pacing guide. Many schools/districts adopt an integrated life science-chemistry-physics but a physics-chemistry-life science approach is gaining popularity. These different grade levels accord with vastly different student competencies and prior experience. Within grade, other variables contribute to changes in pacing:

- There are opportunities for students to spend longer on some activities (e.g. in improving or refining their design solutions or in exploring simulations beyond the minimum). These elaborations will demand more time.
- For computer modeling activities, completed models are available on **BIOZONE's Resource Hub** and the Teacher's Digital Edition, so students can save time by exploring the model, but not building it themselves.
- The time allocated for investigations will depend on (1) how you choose to organize the class (which may be determined by available resources) and (2) how far students take the investigation. Adjust your lesson plan to incorporate more or less material as needed. You may have investigations you already like to use, so you could choose to leave out equivalent investigations in the book.
- The pace may quicken as students complete more of the book. Later chapters draw on knowledge and understanding of previous chapters, as well as exploring new concepts. Students gain increasing levels of competence and learn valuable skills that enable them to arrive at solutions more quickly. This isn't the rule, but an observation based on the structure of the framework. For help, see "Suggested strategies for pacing" (page CG6).

Scaffolded Learning with the 5Es

In developing *The Living Earth* we have utilized the 5Es instructional model as a basis for developing materials to address all three dimensions of the CA NGSS framework: **disciplinary core ideas**, **science and engineering practices**, and **crosscutting concepts**. By successfully completing the activities, students can demonstrate competence in all three dimensions. This is central to meeting the performance expectations for *The Living Earth* with confidence.

The Five Es

Engage:	make connections between past and present learning experiences.
Explore:	become actively involved in the activity.
Explain:	communicate the learning experience.
Elaborate:	expand on the concepts learned.
Evaluate:	assess understanding of the concepts.

BIOZONE encourages the development of the NGSS learner profile using the 5 Es model

BIOZONE's series for CA-NGSS is

phenomenon-based. Students engage with phenomena through their own investigations and observations, through modeling and data analysis, and through collaborative work and discussion.

Using phenomena to drive inquiry promotes discussion and the sharing of ideas. The iterative approach presents opportunities to look at phenomena from several different perspectives. This allows students of all abilities to widen their thinking and understanding, increasing understanding each time the phenomenon is revisited.

Each IS begins with an **anchoring phenomenon** (right). In each instance, we have chosen a phenomenon that the student is probably familiar with, but which they cannot explain (or cannot explain fully). Teachers can use this activity to find out what the students already know (or think they know) before delving into the content more fully.

The subsequent activities in a chapter take the students, step by step, through phenomena that explore the ideas inherent in the anchoring phenomenon. By the time students revisit the anchoring phenomenon, they should be able to fully explain it.

The content of the *The Living Earth* is organized into 7 chapters, corresponding to the six Instructional Segments (IS) and one chapter addressing basic skills for students studying life sciences. Each Instructional Segment begins with an introduction outlining key questions and is immediately followed by the Anchoring Phenomenon. Engaging activities make up the bulk of each chapter, with each activity focusing on the student investigating and developing understanding of phenomena, applying that understanding to new scenarios, and/or developing a skill or essential science practice, such as graphing, data analysis, modeling, or evidence-based explanation.

Annotated diagrams and photographs are a major part of most activities and the student's understanding of the information is evaluated through questions and/or tasks involving investigation, and data handling and analysis. Tabs at the bottom of the page identify crosscutting concepts, science and engineering practices, and disciplinary core ideas as appropriate. Hub tabs at the bottom of the page indicate if the activity is supported via **BIOZONE's Resource Hub**, which provides online teacher and student support for specific aspects of the activity. A hub icon in the margin indicates the specific part(s) of the activity supported with a hub resource.

EXPLORE

After engaging with the opening information, students explore some aspect of the phenomenon more widely. In this case, students explore the abiotic factors of an estuary and are asked to suggest how these factors affect the inhabitants. Exploration often involves making a model or performing a simple experiment.

6 S. Based on the White Sea sea star population, daws a general diagram (model) to show how the numbers of individuals in population change over an abotic guident. Label it is show the spinal population, and municipate habitation of the tablemore range (the range for an abotic leader custide of which no individuals can survive). EXPLORE: Estuarine habitatis
EXPLORE: Estuarine habilats
EXPLORE: Estuarine habilats
EXPLORE: Estuarine habitats
Estuary; high tide Estuary; low tide
An estuary is a semi-enclosed coastal body of water, which has a free connection with the ocean and where marine and freshwater environment meet and mix. Estuarine water is bracking (that more sail than fresh water but not as much as sewarted but saining waters with fail flower. Estuaries provide hand but for young this and implatory bird populations. They are dynamic environments, meaning the abolic conditions vary widely as he tide rises or talls to cover or expected tail fails. Important abolic tabolic mixed by H, ability, temperature, and disabular doxyon.
The estuarine habitat of the striped shore crab
The striped shore carb, right is a widespread species along the weat where it is exposed to and rot about hald of each day. If leves in had where it is exposed to and rot about hald of each day. If leves in had be in other date is begin worked dog up and it could authorized. It will scrape in and out of the weater, feeding mostly at right on algae. Rimpede, and marker cash.
3. (a) Thinking about estuarine environments (above), what are some of the challenges faced by the striped shore crab living there?
(b) Suggest what physiological, structural, or behavioral features might be important to the striped shore crab's survival?
0.000 BOCKNE HANDRON 1088 EPJ-1494546343 1964 EPJ-149454634

EXPLAIN

Once they have explored some basic concepts, students are given new information or data to analyze. They must explain any patterns they see in the data. Here students must analyze physical data over the course of a year and use it to predict how well estuarine inhabitants might tolerate the changes in the environment based on biological information.

8 Water temperatur	e and dissolved oxygen, South Marsh, Elk	orn Slough, 2016 - 2017
2 ¹⁰⁻	Manuala An	3 M. M.M.
SNAPSHOT: ELKHORN SLOUGH, CALIFORNIA		Mum 15
	and a state of the second second	
	and the second s	5 Sec. 147
	A SHORE WE W	017
	A State Barrier Barrier	2017
EXPLAIN: How do abiotic factors affect organisms?		A. 1
 Eikhorn Slough National Estuarine Research Reserve (above) is a large (688 ha) tidal salt marsh and estuary located half way between 	CA EP&Cs I: The ecosystem services provided by natural systems are escential to human life (I b)	Maria
Santa Cruz and Monterey. The estuary extends 11 km inland from the coast and provides habitat for over 700 species including plants,	Wetlands like the Elkhorn Slough	W
 The reserve is made up of several different areas, including South March, Habitats rance from oak woodlands and coastal chanarral to 	and the environment. The physical and biotic	
marshes and wellands. The reserve is owned and managed by the California Department of	environment of the wetland acts as a stural filter for water before it	Sep '17 Jan '18
Fish and Wildlife. Along with researchers from the National Oceanic and Atmospheric Administration (NOAA), they monitor the health of the	 The high productivity of wetlands tiso means they are able to 	al conditions. Use evidence from
 Some of the research involves monitoring abiotic factors and the effect of their changes on the clants and animals within the reserve. 	remove and store large amounts of carbon dioxide from the	bur answer:
 Environmental tolerance factors for two organisms found at South Marsh are shown below. Chinook salmon is a migratory fish species 	warming.	
which moves into coastal streams to spawn. The Olympia oyster is a resident filter-feeding bivalve mollusk (shellfish).	allows better management of resources to benefit both humans	
 Selected physical data for South Marsh over two years (2016-2017) is presented on the next page. 	and wildlife.	between the two?
		_
	A Stance	jh?
		horn Slough?
California Environmenta		
Principles and Concept	coloration	nt and the species that live there?
related to the concept bei	ng on stage.	
studied are identified in th	and fry	
relevant pages	hould not	_
relevant pages.	num DO of mg/L.	02020 BIOZONE International ISBN: 978-1-98-856628-3 Photocoving PashPatwol
PH range of 7.5-8.5 is required for optimal growth. Optimum pl	ival. H is narrow at 7.5-7.8.	- material and a second second
©2020 BIOZONE International		
ISBN: 978-1-98-856628-3 Photocopying Phohibited		

ELABORATE

Students apply their understanding to a new situation. Given the physical environment of Elkhorn Slough, could (and should) a new fishery be developed there by introducing a new species? Students will need to come up with reasoned arguments.

<page-header><image/><image/><image/><image/><image/><image/></page-header>	EVALUATION E	<form><form><form></form></form></form>
EVALUATE Having developed arguments for or a establishment of a fishery, students p arguments to other in the class. As a can evaluate the merit of these argum EVALUATE: communicate your findings A a group present your arguments (in cutting above to the class), e.g. as a poster or only presentation.	igainst the present their class, they nents.	The system extended of the document operators in the system operator operators in the system operator operators in the system operator operators in the system operators in th

Contents

A red flag beside a section

or question indicates that

Instru Ecos

An End ANCHO

2 The Ear ENGAGE

Practical Investigations

Throughout *The Living Earth*, students are given opportunities to explore phenomena through simple experiments. These **investigative phenomena** are opportunities for students to develop competency in laboratory procedures, to practice and refine skills in observation and analysis, and to manipulate data. Some investigations act as stimulus material while others require students to take what they have already learned and apply their knowledge to a more complex scenario.

The investigations provide an excellent opportunity for collaborative work and will stimulate discussion and the sharing of ideas. You may wish to pair students of different abilities together. Confident students can guide and encourage less able students and, in this relaxed environment, striving students will be encouraged to share their own observations and thoughts. Collaboration through paired practical work provides an excellent opportunity for English language learners to interact in meaningful ways to extend their English language and scientific vocabulary.

California Environmental Principles and Concepts

The California Environmental Principles and Concepts (EP&Cs) have been incorporated into *The Living Earth* to address environmental literacy. This is in accordance with the requirements of the California Education and the Environment Initiative (EEI). Within *The Living Earth*, the EP&Cs material provides examples and context for students to study the relationship between humans and the natural world.

Activities containing EP&Cs are easily identified in The Living Earth.

- In the Teacher's Edition (and Teacher's Digital Edition) the EP&Cs are identified in the chapter front in orange. In the first example below, students investigate how the by-products of human activity can affect the environment. The specific focus is the effect of mercury on the environment [EP&Cs: IV]. In the second example, students investigate the impact of an invasive species (Kudzu) on an ecosystem [EP&Cs: V] and look at how the introduction of new species is managed now to mitigate negative effects.
- Orange boxes within specific activities clearly identify where EP&Cs are covered (see below).
- The specific EP&C code (e.g. EP&C V) is identified on the page so you know exactly which principle is being covered.

Engineering Design Solutions

ETS SEPs, CCCs, DCIs, and performance expectations as indicated in the CA-NGSS framework are met through appropriately integrated engineering and design challenges. Typically tasks include analyzing problems, developing solutions using engineering, evaluating a design solution based on costs and benefits, or modeling a design solution.

The three dimensions of the NGSS framework appropriate to each design challenge are indicated in the chapter introduction of the Teacher's Edition (and Teacher's Digital Edition) and indicated through the tab system on the activity itself. Such tasks are usually examples of 'ELABORATE' as they involve the students applying what they learned to solve a problem. As such, they also make good tasks for formative or summative assessment.

making their decision students must take into consideration the needs of society (the benefits to be gained by mining a coal deposit), recreational value (tramping), and changing environmental conditions (sea level rise). Once they have decided, they must justify their decision to convince others the right choice has been made.

real life problem and seeing how a technological solution can help to solve it, but the collaborative nature of the work is beneficial to English Your challenge is to analyze and design a solution to tackle climate change caused by human activity. Your class will be divided into gr (a) Each group will analyze how the greenhouse gases produced from human activity contribute to global warming. Identify criteria for measuring the scope of the problem. Once you have finished your research, set the specific targets that you think are needed to resolve the problem. CA EP&Cs V: There is a sp what is considered in making to resolve use provinin. (b) Present your group's findings to the class. The class must then decide together what goal and targets are required to reduce the effects of climate change. You may find that there are a number of different opinions expressed, and compromises may have to be made to reach agreement among the groups. Many factors must be taken into consideration when trying to solve complex problem of climate change ve the (c) Now your target is set, work in your groups and evaluate a solution to reach the target. Your teacher will tell you whether you are investigating the use of carbon reduction techniques, or looking at how carbon capture and storage techniques can be used to achieve your goal. Consider and prioritize a range of criteria when evaluating your solution. This includes cost, safety, reliability, and how something looks (acethetics). You should also take into account any social, cultural, and environmental impacts. Human need for resources and energy must be balanced with environmental considerations to mitigate climate change. Solutions must be prioritized against a range of criteria including cost, safety, reliability, aesthetics, cultural, societal, and environmental needs. (d) Finish with a "climate change summit". Each group should present their findings and recommendations to the whole class ©2020 BIOZONE Internation ISBN: 978-1-98-856628-3 Photocranuing Prohibited ©2020 BIOZONE International

summit to set targets and goals, then work in groups to investigate a variety of solutions to see how the goals can be achieved. Factors they must consider include cost safety, and reliability, plus social, cultural and environmental considerations.

The activity provides an excellent example of how ETS can be linked to achieve CA EP&Cs outcomes.

The Nature of Science

The Nature of Science combines established information with new knowledge to constantly refine what we know about the natural world. Eight Nature of Science understandings are presented in the NGSS document. Four are associated most closely with Science and Engineering Practices, and four with the Crosscutting Concepts. Because the Nature of Science understandings have been incorporated into most activities in the *The Living Earth*, we have not identified them specifically on the activity page. Some examples of activities relating to the eight Nature of Science understandings are illustrated below. The subheading to which they relate is also given.

Nature of science understandings most closely associated with science and engineering practices

Scientific investigations use a variety of methods.

 Scientific investigations use a variety of methods, tools, and techniques to revise and produce new knowledge

Scientific knowledge is based on empirical evidence.

 Scientific knowledge is based on empirical evidence.

Scientific knowledge is open to revision in light of new evidence.

Most scientific knowledge is quite durable but is subject to change based on new evidence and/or reinterpretations of existing evidence.

Science models, laws, mechanisms, and theories explain natural phenomena.

Models, mechanisms, and explanations collectively serve as tools in the development of a scientific theory.

Nature of science understandings most closely associated with crosscutting concepts

Science is a way of knowing.

Scientific knowledge has a history that includes refinement of, and changes to, theories, ideas, and beliefs over time.

Scientific knowledge assumes an order and consistency in natural systems.

Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and will continue to do so in the future.

Science is a human endeavor.

Technological advances have influenced the progress of science and science has influenced advances in technology.

Science addresses questions about the natural and material world.

Scientific knowledge indicates what can happen in natural systems - not what should happen. The latter involves ethics, values, and human decisions about the use of knowledge.

Teaching Strategies for Classroom Use

Achieving effective differential instruction in classes is a teaching challenge. Students naturally have mixed abilities, varying backgrounds in the subject, and different language skills. Used effectively, BIOZONE's student books and supporting resources can make teaching a mixed ability class easier. Here, we suggest some approaches for differential instruction.

MAKING A START

CG22

Regardless of which activity you might be attempting in class, a short introduction to the task by the teacher is a useful orientation for all students. For collaborative work, the teacher can then divide the class into appropriate groups, each with a balance of able and less able students. Depending on the activity, the class may regroup at the end of the lesson for discussion.

Using collaboration to maximize learning outcomes

- The structure of *The Living Earth* allows for a flexible approach to unpacking the content with your students.
- The content can be delivered in a way to support collaboration, where students work in small groups to share ideas and information to answer and gain a better understanding of a topic, or design a solution to a problem.
- By working together to ask questions and evaluate each other's ideas, students maximize their own and each other's learning opportunities. They are exposed to ideas and perspectives they may not have come up with on their own.
- Use a short, informal collaborative learning session to get students to exchange ideas about the answer to a question. Alternatively, collaboration may take a more formal role that lasts for a longer period of time (e.g. assign groups to work together for a paper practical activity, to research an extension question, or design a solution to a problem).

The teacher introduces the topic. They provide structure to the session by providing background information and setting up discussion points and clear objectives. Collaboration is emphasized to encourage participation from the entire group. If necessary, students in a group can be assigned specific tasks.

Students work in small groups so everyone's contribution is heard. They collaborate, share ideas, and engage in discourse. The emphasis is on discussing questions and formulating a consensus answer, not just sharing ideas.

At the end of the session, students report back on their findings. Each student should have enough knowledge to report back on the group's findings. Reporting consists primarily of providing answers to questions, but may involve presenting a report, model, or slide show, or contributing to a debate.

Peer to peer support

- **Peer-to-peer learning** can be used for any activities, but is particularly valuable for more challenging activities in which the content is more complex or the questions require students to draw on several areas of their knowledge to synthesize an answer. Examples of such activities include modeling activities, activities with a design component, or activities involving data analysis, graphing, and evaluation.
- Stronger peers can assist weaker students and both groups benefit from verbalizing their thoughts and presenting them to a group. Students for whom English is a second language can ask their peers to explain unfamiliar terms (both scientific and English) and this benefits both parties.

Paper practicals (Included in the activities *Modeling Photosynthesis and Respiration, Natural Selection, Continental Drift, Modeling the Structure of DNA, Sexual Reproduction Produces Genetic Variation*) are an ideal vehicle for this kind of peer-to-peer learning. They are not only enjoyable, but they prompt students to ask questions and think about how they could use the model to answer those questions. There are also opportunities to collaborate on online and paper simulations (e.g. **Populus**).

Interactive revision of tasks in class

- The **Teacher's Digital Edition** provides a digital rights managed (DRM) version of the student book as PDF files. It features useful HIDE/SHOW answers, which can be used to review activities in class using a data projector or interactive whiteboard (see opposite).
- Students benefit from the feedback in class, where questions can be addressed, and teachers benefit by having students self-mark their work and receive helpful feedback on their responses.
- This approach is particularly suited to activities with questions requiring a discussion, as students will be able to clarify some aspects of their responses. Stronger students can benefit by contributing to the explanatory feedback and class discussion.

NGSS as collaboration and discovery

- BIOZONE's The Living Earth provides multiple chances for collaboration and discovery. By working together and sharing ideas, students are exposed to different perspectives and levels of knowledge about a particular phenomenon.
- NGSS requires deeper student engagement with less emphasis on facts and more on understanding. By exploring
 principles and concepts within a context students are more easily able to apply these principles to new phenomena.
- BIOZONE's The Living Earth uses the CA NGSS as a framework to develop student understanding by providing a range of activities. These begin by getting students to think about and share what they already know and then build on this knowledge by providing opportunities to explore and explain phenomena.
- Activities supporting the ETS Performance Expectations involve collaboration. In this way, students can discuss possible solutions to engineering problems, and evaluate and refine their own (or existing) solutions.

Student A is capable. He helps to lead the discussion and records the others ideas in a structured way.

Students B and C are also capable but less willing to lead discussion they will add ideas to the discussion but need a little direction from A to do so.

Student D is less able but gains ideas and understanding from the discussion of students A, B, and C. She may add to the discussion as she gains confidence in the material being studied.

Tools for Differentiated Instruction

The structure of *The Living Earth* promotes differentiated instruction, and has been designed to cater for students of all abilities. BIOZONE's collaborative approach to science inquiry encourages students of all abilities to share their ideas and knowledge with their peers while at the same time broadening their own understanding of phenomena. There are several ways you can use *The Living Earth* to implement differentiated instruction in your classroom:

Animations and videos: Use the videos and animations on BIOZONE's Resource Hub to help striving learners with their English language skills and understanding of content. The Resource Hub also provides material tagged for gifted and talented students.

A group symbol indicates where students can work together. Group work provides opportunities for student collaboration and peer-to-peer support to explore and explain phenomena. Working in groups, students can experience the benefits of collaboration in the scientific process of discovery. English language skills and scientific vocabulary are extended when students discuss and listen.

Red flag codes beside a section or question (on the Teacher's Edition or Teacher's Digital Edition) indicate that students may need extra guidance from the teacher to complete them. These questions are also suitable as challenges for more gifted students. Red flag questions are also identified in the extended contents of this guide.

A red figure with a NEED HELP? icon helps students identify where they can go to get help with a specific skill. Skills and tips for computation, data analysis, plotting, statistical analysis, and aspects of experimental design are provided in the Basic Skills chapter at the end of the book. Students can visit this chapter regularly, or you can assign activities as homework before they attempt a specific task in class.

Formative and Summative Assessment

The Living Earth provides ample opportunity for students to demonstrate their understanding and proficiency in all three dimensions of the standards. Opportunities for both formative and summative and assessment are provided.

As this series has been written specifically for the CA-NGSS Three Course Model, all activities (including assessments) are three-dimensional in their approach, with the goal to enable achievement of specific performance expectations. Performance expectations (PE) are not always met through completion of one activity or assessment, but through completion of a connected suite of tasks (as intended by the framework).

Assessments involve a variety of tasks as appropriate to a 3D approach, e.g., constructing models, analyzing and interpreting data, explaining, and communicating understanding through short and long answers, drawings, calculations, group work, design, and problem solving. The structure of the tasks is such that students use specific science and engineering practices and apply relevant crosscutting concepts to demonstrate their understanding of disciplinary core ideas.

Formative assessments can be chosen by the teacher to determine how a student's knowledge is progressing within a selected topic. We suggest that 'ELABORATE' and 'EVALUATE' sections of activities be used for formative assessment. These may incorporate some aspect of a performance expectation with the goal being to build confidence. Teachers can revise their instruction, revisit material, or set further tasks if a student is having difficulty with the material. Revisiting the Anchoring Phenomenon near the end of each instructional segment also provides a way to evaluate student understanding.

Summing up tasks at the close of each instructional segment can be used as a formal summative testing moment to evaluate student skills, understanding, and application of knowledge. These tasks are designed to meet part or all of one or more performance expectations. Material to address specific performance expectations is identified with a red tab in the margin throughout the Teacher's Edition. Performance expectations are also identified in the chapter introduction for the instructional segment, and in the tables summarizing BIOZONE's 3D approach by chapter earlier in this guide. Note: All coding associated with assessment is hidden from the student and is available only in teacher's materials.

The Teacher's Digital Edition

The *Teacher's Digital Edition* is a DRM product, sold separately, and aimed primarily at extending the pedagogical tools at a teacher's disposal. Many of the features of this resource have been developed in response to requests from teachers themselves.

